3. ПОЛОНИЙ

 PO
 6

 ПОЛОНИЙ
 32

 (209)
 8

 6s²6p⁴
 2

Полоний— радиоактивный химический элемент VI группы периодической системы элементов. Атомный номер 84. Атомная масса 209. Обозначается символом Ро (лат. *Polonium*).

Элемент открыт в 1898 супругами Пьером Кюри и Марией Склодовской-Кюри в смоляной обманке— урановой руде. При этом элемент 84 концентрировался в висмутовой фракции. Первый образец полония, содержащий 0,1 мг этого элемента, был выделен в 1910. Элемент назван в честь родины Марии Склодовской-Кюри— Польши (лат. *Polonia*). М.Кюри предположила, что повышенная радиоактивность некоторых образцов урановой смоляной руды обусловлена присутствием в руде других, ещё неизвестных радиоактивных веществ. Это подтвердилось, и из урановой руды сначала был выделен новый элемент, концентрирующийся в соединениях висмута — полоний, а затем элемент, сходный с барием — радий.

Периодическая система элементов He F Ne $\underline{\mathbf{Be}}$ P S <u>C1</u> Mg A1 Si Ar Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Sr Y Zr NbMo Tc Ru Rh Pd Ag Cd In Sn Ba * HfTa W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Ra ** RfDb Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

** AcTh Pa U Np Pu AmCmBk Cf Es Fm Md No Lr

Полоний всегда присутствует в урановых и ториевых минералах. Равновесное содержание полония в земной коре $2 \cdot 10^{-14} \%$ по массе. В урановых рудах равновесное отношение урана к полонию составляет 1.9×10^{10} . Это означает, что в урановых минералах полония почти в двадцать миллиардов раз меньше, чем урана (в равновесии с 1 г радия находится 0,2 мг полония).

Содержание полония в земной коре 2- 10^{-15} %. Существуют семь изотопов полония,

которые образуются во всех трех естественно-радиоактивных семействах в процессе распада эманации (радона, торона, актинона) или их продуктов распада. В процессе распада они превращаются в стабильные или радиоактивные изотопы свинца.

Основным источником 210 Ро в окружающей среде является 222 Rn, выделяющийся из почвы. Для средних широт Северного полушария средние концентрации 210 Ро составляют $0,12 \cdot 10^{-3}$ Бк/м 3 . Концентрация 210 Ро в почве колеблется в пределах $(7,4-22,2) \cdot 10^{-2}$ Бк/г в зависимости от типа почвы; в атмосферных осадках — $(0,37-9,2) \cdot 10^{-2}$ Бк/л; в воде открытых водоемов концентрация 210 Ро в 10 - 100 раз меньше.

Электронная конфигурация атома полония $6s^26p^4$ аналогична конфигурациям селена и теллура.

Полоний (Ро)				
Атомный номер	84			
Внешний вид	серебристо-серый металл			
Свойства атома				
Атомная масса (молярная масса)	208,9824 а.е.м. (г/моль)			
Радиус атома	176 пм			
Энергия ионизации (первый электрон)	813,1 (8,43) <u>кДж/моль</u> (<u>эВ</u>)			
Электронная конфигурация	[Xe] $4f^{14} 5d^{10} 6s^2 6p^4$			
Химические свойства				
Ковалентный радиус	146 пм			
Радиус иона	(+6e) 67 <u>IIM</u>			
Электроотрицательность (по Полингу)	2,0			
Электродный потенциал	$Po \leftarrow Po^{3+} 0,56 B$ $Po \leftarrow Po^{2+} 0,65 B$			
Степени окисления	-2, +2, +4, +6			
Термодинамические свойства				
Плотность	9,32 <u>г/см</u> ³			

Удельная теплоёмкость 0,125 Дж/(K·моль)

<u>Температура плавления</u> 527 <u>К</u>

Теплота плавления (10) кДж/моль

<u>Температура кипения</u> 1,235 <u>К</u>

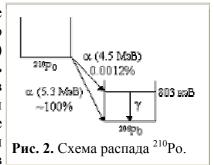
Теплота испарения (102,9) кДж/моль

<u>Молярный объём</u> 22,7 <u>см³/моль</u>

Кристаллическая решётка

Структура решётки кубическая

<u>Период решётки</u> 3,350 <u>Å</u>


3.1 Изотопы полония

На начало 2006 года известны 33 изотопа полония в диапазоне массовых чисел от 188 до 220. (Полоний - один из самых многоизотопных элементов). Кроме того, известны 10 метастабильных возбуждённых состояний изотопов полония. Наиболее долгоживущий изотоп, ²⁰⁹Ро (получен искусственно), имеет период полураспада 102 года.

Наиболее долгоживущий из природных изотопов полоний-210 (природный радионуклид) — практически чистый альфа-излучатель (T=138,401 дня), образующийся в радиоактивном ряду урана-238 (выход γ -квантов составляет 1,1.10⁻³%). Он является одним из продуктов долгоживущего активного осадка радона. Превращение ²¹⁰Ро в ²⁰⁶Рв происходит в результате α -распада

$$^{210}\text{Po} \Longrightarrow^{206}\text{Pb} + \Longrightarrow$$

В подавляющем количестве случаев ²¹⁰Ро распадается на основное состояние ²⁰⁶Рb с испусканием альфа-частиц с энергией 5.3 МэВ, и только ничтожная доля (0.00122%) ядер ²¹⁰Ро распадается на возбужденное (803 кэВ) состояние ²⁰⁶Рb, которое распадается с испусканием гамма-квантов. Обнаружить сопутствующее такому альфа-распаду гамма-излучение можно только в прецизионном эксперименте. Изотоп ²¹⁰Ро является не только самым долгоживущим среди естественных, т.е. существующих на Земле, а не полученных искусственным путем, изотопов полония, но и самым распространенным. Он постоянно образуется за счет цепочки распадов

изотопов, которая начинается с
238
U и кончается 206 Pb. 238 U \rightarrow 234 Th \rightarrow 234 Pa \rightarrow 234 U \rightarrow 230 Th \rightarrow 228 Ra \rightarrow 222 Rn \rightarrow 218 Po \rightarrow 214 Pb \rightarrow 214 Po \rightarrow 210 Pb \rightarrow 210 Pb \rightarrow 210 Po \rightarrow 206 Pb

Таким образом, источником получения полония-210 может служить активный осадок радона, накапливающийся в старых радоновых ампулах.

Период полураспада $(T_{1/2})^{238}$ U 4.5 миллиарда лет. В естественной урановой смеси ²³⁸U более 99%. Для количества ядер (N) изотопов урана (²³⁸U) и полония (²¹⁰Po) в естественной смеси и их периодами полураспада $(T_{1/2})$ справедливо соотношение

$$\frac{N^{\left(238U\right)}}{N^{\left(210Po\right)}} = \frac{T^{\left(238U\right)}}{T^{\left(210Po\right)}}$$

Аналогичные соотношения справедливы для всех изотопов цепочки последовательных распадов, т.к. они находятся в *вековом равновесии*, когда количество распадов в единицу времени у всех изотопов одинаковое. В в 1 тонне урановой руды содержится 100 микрограмм полония. В основном это ²¹⁰Ро. Всех других естественных изотопов полония еще меньше (и на много). Полоний можно выделить из урановых руд при обработке отходов уранового производства. Однако для для того, чтобы получить заметное количество полония, пришлось бы обработать немыслимое количество таких отходов.

Кроме 210 Ро еще два искусственно-радиоактивных изотопа полония имеют относительно большие периоды полураспада - это 208 Ро (T=2.898 лет) и 209 Ро (T=102 лет). Эти изотопы можно получить, используя бомбардировку ускоренными в циклотроне пучками альфа-частиц, протонов или дейтронов мишеней из свинца или висмута. Все остальные изотопы полония имеют периоды полураспада от 8.8 дней (206 Ро) до долей микросекунды (Табл.).

Некоторые изотопы полония, входящие в радиоактивные ряды урана и тория, имеют собственные (устаревшие) наименования:

Изотоп	Название	Обозначение	
²¹⁰ Po	Радий F	RaF	

²¹¹ Po	Актиний С'	AcC'
²¹² Po	Торий С'	ThC'
²¹⁴ Po	Радий С'	RaC'
²¹⁵ Po	Актиний А	AcA
²¹⁶ Po	Торий А	ThA
²¹⁸ Po	Радий А	RaA

Радионуклиды полония входят в состав естественных радиоактивных рядов: 210 Ро (T=138,376 суток), 218 Ро (T=3,10 мин) и 214 Ро ($T=1,643\cdot10^{-4}$ с) — в ряд 238 U; 216 Ро (T=0,145 с) и 212 Ро ($T=2,99\cdot10^{-7}$ с) — в ряд Th; 215 Ро ($T=1,781\cdot10^{-3}$ с) и 211 Ро(T=0,516 с) — в ряд 235 U **Табл. 4.** Изотопы полония.

Изотопы полония						
A	T _{1/2}	Тип распада	Радиоактивный ряд			
190	2.53 мс	æ, ЭЗ 0.1%				
191	22 мс	OX.				
192	33.2 мс	2 ≈ 99.5%,Э3≈ 0.5%				
194	0.392 с	OX.				
195	4.64 c	₽ 75%,∋3 25%				
196	5.8 c	u≈ 98%,Э3≈ 2%				
197	1.4 м	ЭЗ 56%, ж 44%				
198	1.87 м	257%,∋3 43%				
199	4.58 м	ЭЗ 92.5%, ҩ7.5%				
200	10.9 м	ЭЗ 88.9%, α 11.1%				
201	15.3 м	ЭЗ 98.4%, α1.6%				
202	44.7 м	ЭЗ 98.08%, ⊯1.92%				
203	36.7 м	ЭЗ 99.89%, 🕫 0.11%				
204	3.53 ч	ЭЗ 99.34%, №0.66%				
205	1.66 ч	ЭЗ 99.96%, №0.04%				
206	8.8 д	ЭЗ 94.55%, ₫5.45%				
207	5.80 ч	ЭЗ 99.98%, №0.02%				
208	2.898 г	cz, Э3				
209	102 г	œ99.52%,Э3 0.48%				
210	138.376 д	Ci.	²³⁸ U			
211	0.516 c	œ	²³⁵ U			
212	0.299 мкс	œ	²³⁶ U			
213	3.65 мкс	œ	²³⁷ Np			
214	164.3 мкс	O.	²³⁸ U			

215	1.781 мс	α, β- 0.00023%	²³⁵ U
216	0.145 c	OL	²³⁶ U
217	1.47 c	æ>95%,β⁻<5%	²³⁷ Np
218	3.10 м	∞99.98%, ^β - 0.02%	²³⁸ U
219	2 м	α?,β-?	

Табл. 5. Ядерно-физические характеристики некоторых наиболее распространённых изотопов полония.

			Средняя излучения	энергия я, МэВ/Бк∙с	
Радио- нуклид	T _{1/2}	Тип распада	характери- стическое у-и анни- гиляционное излучение	β- излучение, конверсионные злектроны и злектроны Оже	Дочерий радионуклид (выход)
²⁰³ Po	36,7 мин	3∋; β+	1,64	1,60 · 10-1	²⁰³ Ві радиоакт. (0,9989)
²⁰⁵ Po	1,8 ч	39; β+; α	1,55	5,75-10-2	²⁰¹ Pb радноакт, (1,40·10 ⁻³) ²⁰⁵ Bi радноакт, (0,999)
²⁰⁷ Po	350 мин	39; β+	1,32	$5.05 \cdot 10^{-2}$	207Ві радиоакт,
210Po	138,38 сут	α΄	8,50 • 10 -6	8,18.10-8	²⁰⁶ Рь стаб.
211Po	0,516 c	α	$7,79 \cdot 10^{-3}$	1,69-10-4	²⁰⁷ Pb стаб.
²¹² Po	0,305 мкс	α	_		²⁰⁸ Pb стаб.
213Po	4,2 мкс	α	_	_	²⁰⁹ РЬ радноакт.
214Po	164,3 MKC	α	8,83 · 10 - 5	8,19.10-7	горь радиоакт.
215Po	0,001780 c	α	1,76-10-4	$6,30 \cdot 10^{-6}$	²¹¹ Рb радиоакт.
216Po	0,15 c	α	$1,69 \cdot 10^{-5}$	$1,61 \cdot 10^{-7}$	²¹² Рb радиоакт.
218Po	3,05 мин	β¯;α	9,12.10-6	1,42.10-5	²¹⁴ Pb радиоакт. (0,9998) ²¹⁸ At радиоакт. (2,0·10 ⁻¹)

3.2 Физические и химические свойства

Полоний - серебристый металл, светящийся в темноте, легкоплавкий и сравнительно низкокипящий; температуры его плавления и кипения соответственно 254 и 962 °C.

Сопоставление свойств полония со свойствами серы, селена и теллура, с одной стороны, и висмута, свинца и таллия — с другой, показывает, что металлический полоний по своим физическим свойствам скорее напоминает элементы, соседние по периоду (Ві), чем по группе (Те). Подавляющее большинство исследований химического поведения полония в растворах проводилось с микроколичествами ²¹⁰Ро. Это обусловлено тем, что исследования с большими количествами этого элемента осложнены сильным авторадиолизом (массовая активность ²¹⁰Ро составляет 1,7·10¹⁴ Бк/г). Специфическим носителем при изучении поведения микроколичеств полония является теллур. Однако следует учитывать, что в наибольшей степени аналогия в химическом поведении этих двух элементов проявляется в случае ковалентных соединений (оксианионы, элементорганические соединения и др.). Более основной характер полония по сравнению с теллуром определяет некоторое различие в поведении их ионных форм. Особенно это сказывается в склонности полония к комплексообразованию с многими лигандами, для которых комплексообразование с теллуром нехарактерно. В этом отношении полоний занимает промежуточное положение между теллуром и висмутом, и часто отделить полоний от висмута труднее, чем от теллура.

Чистый полоний имеет две аллотропных модификации: низкотемпературная α-форма с кубической решеткой, и высокотемпературная β-форма с ромбической решёткой. Фазовый переход из одной формы в другую происходит при 36 °C. Интересно, что при комнатной температуре свежеприготовленный полоний находится в высокотемпературной форме. Его подогревает собственное излучение — выделение тепла происходит в самом образце при испускании полонием α-частиц. По внешнему виду полоний похож на любой самый обыкновенный металл. По легкоплавкости - на свинец и висмут. По электрохимическим свойствам - на благородные металлы. По оптическому и рентгеновскому спектрам - только на самого себя. А по поведению в растворах - на все другие радиоактивные элементы: благодаря ионизирующему излучению в растворах, содержащий полоний, постоянно образуются и разлагаются озон и перекись водорода.

Наиболее применимыми методами получения металлического полония являются термическое разложение сульфида полония в вакууме при 500—700° С или вакуумная возгонка с поверхности электродов из благородных металлов, на которые полоний выделяется электролизом.

Атомный диаметр полония 3,38A, атомный объём 22,1-22,5 (A)³, плотность 9,392 г/см³ (чуть меньше, чем у свинца), т.пл. 254° , т.кип. 962° , теплота парообразования 24,597 ккал/моль. Давление пара полония в интервале 438-7450 определяется уравнением:

$$\lg p = \frac{-5377}{T} + 7,2345$$

Термический коэффициент линейного расширения $2,35*10^{-5}$. Удельное электросопротивление для α- и β-форм при 0° С соответственно равно (мкОм.см) 42 и 44.

По химическим свойствам полоний - прямой аналог серы, селена и теллура. Он проявляет валентности 2-, 2+, 4+, 6+, что естественно для элемента этой группы. Наиболее устойчивым из них является Po^{4+} . Полоний хорошо адсорбируется на различных материалах, особенно на металлах. Обладает амфотерными свойствами. Образует коллоидальные гидроксиды или основные соли в щелочных, нейтральных или слабокислых растворах.

Элементарный полоний окисляется на воздухе. Известны диоксид полония $(PoO_2)_x$ и монооксид полония PoO. С кислородом полоний быстро реагирует при нагревании, образуя при 250° двуокись PoO_2 . В индикаторных количествах получены кислотный триоксид полония PoO_3 и соли полониевой кислоты, не существующей в свободном состоянии— полонаты K_2PoO_4 . С галогенами при нагревании полоний даёт тетрагалогениды $Po\Gamma_4$. С водородом и азотом не взаимодействует. При нагревании металлического полония с металлами образуются полониды, изоморфные с соответствующими теллуридами. Металлический полоний растворяется в азотной и соляной кислотах.

Металлический полоний медленно растворяется в 2н HCl, образуя раствор Po(II),

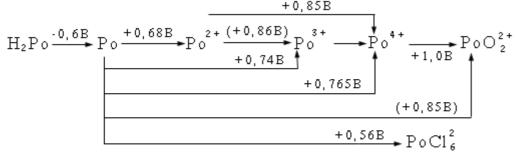
$$Po + 2HCl \rightarrow PoCl_2 + H_2$$

Катион Po^{2+} окрашен в розовый цвет. Он под действием собственного излучения окисляется и переходит в Po(IV).

При растворении полония в соляной кислоте в присутствии магния образуется полоноводород:

$$Po + Mg + 2HCl \rightarrow MgCl_2 + H_2Po$$

Процесс окисления сложен. Есть предположение, что полоний окисляется перекисью водорода, образующейся в растворах под действием α -излучения:


$$Po^{2+} + 2H^{+} + H_2O_2 \rightarrow Po^{4+} + 2H_2O.$$

Металлический полоний легко растворяется в концентрированной (но не разбавленной) азотной кислоте с выделением оксидов азота.

Известны следующие оксиды полония: PoO, PoO₂ и PoO₃. Из них наиболее устойчивым является PoO₂ Соответствующий этому оксиду гидроксид трудно растворим в воде и обладает амфотерными свойствами. При растворении PoO₂ в щелочах образуются полонаты: PoO(OH)₂ + 2KOH = K_2 PoO₃ + 2H₂O а при растворении в минеральных и некоторых органических (например, уксусной, щавелевой и др.) кислотах — соответствующие соли полония (IV). Получены также галогениды полония (II) и (IV), растворимые в избытке галогеноводородных кислот. Соединения типа PoГ₄ образуются прямым синтезом из элементов, а соединения PoГ₂ — термическим разложениям галогенидов Po(IV).

Согласно современным представлениям устойчивость полония В различных степенях окисления может быть представлена схематически:

в киспотных растворах:

в щепочных растворах: Ро²⁻ ·1,0В Ро ·0,5В - РоОз

Данная схема позволяет предсказать степень окисления полония в растворе действии различных окислителей и восстановителей. Однако следует учитывать, что растворах галогеноводородных кислот. уксусной, щавелевой некоторых других органических кислот полоний образует прочные комплексные

соединения, в которых он находится в наиболее характерной степени окисления +4. Кроме того, для Ро (IV) характерно образование устойчивых гидроксокомплексов. В растворах других кислот, таких, как азотная,

серная, хлорная, для которых нехарактерно образование комплексов с полонием, имеет место диспропорционирование Po(IV) с образованием соединений двух- и шестивалентного полония.

В водных растворах в области рН > 1 все соли и комплексные соединения полония гидролизуются. При значениях pH 4,5 — 5 образуется гидроксид полония (IV), растворимый при pH 12. Склонность к гидролизу и комплексообразованию наряду с повышенной сорбируемостью гидролизных форм полония осложняет изучение химии этого элемента.

Валентность -2 проявляется в образовании Н₂О и соответствующих полонидов. Валентное состояние проявляется в образовании галогенных и некоторых других солей (например, сульфидов). Четырёхвалентному состоянию полония отвечают двуокись PoO₂, галогениды PoX₄ и др. соли. Химические свойства PoO_2 аналогичны свойствам TeO_2 . При взаимодействии PoO_2 с кислотами образуются соли Po(IV). Двуокись полония растворима в воде, соляной кислоте, ацетоне и некоторых др. кетонах. Гидроокись полония вероятной формулы РоО(ОН), получается при добавлении раствора NH₃ или NaOH к кислому раствору свежеполученных PoCl₄ или PoBr₄; трудно растворима в воде и растворах NaOH, легко растворяется в разбавленных кислотах.

Получено большое число комплексных соединений 4-валентного полония общей формулы Me[PoX₆], где Me-K, Rb-K, Rb, Cs, NH4, X – галоген; гексахлорополониты цезия, рубидия, калия и аммония жёлтого цвета, изоморфны аналогичным солям Те. Известно большое число полоний- органических соединений типа R₂PoX₂, RPoX₃ и R₃PoX, где R – органический радикал. 4-валентный полоний даёт большое число комплексных соединений с органическими растворителями: ацетоном, изопропиловым метилизобутилкетоном, трибутилфосфатом и др.

Подобно теллуру полоний образует элементорганические соединения следующих типов: PoR₂, PoR₄, PoR₃X, PoR₂X₂ и PoRX₃, где R — алкил или арил, X — галоген. Впервые органические производные полония (II) и (IV) были получены В. Г. Хлопиным и его учениками методом специфических носителей. Большую роль в синтезе полонийорганических соединений сыграл также метод, основанный на процессах β-распада ²¹⁰Ві в составе различных органических соединений этого элемента (см. ч. IV).

3.3 Получение

Изотоп ²¹⁰Ро может быть выделен из урановых руд как побочный продукт при добывании радия. Обычно ²¹⁰Ро получают из долгоживущего радиоактивного изотопа свинца ²¹⁰Рb (T=23,3 года):

$$RaD(^{210}Pb) \xrightarrow{\beta^{-}} RaE(^{210}Bi) \xrightarrow{\beta^{-}} RaF(^{210}Po).$$

Выделяют полоний из солей радия и старых радоновых ампул экстракцией, ионным обменом, хроматографией или возгонкой. Сначала извлекают RaD, который и выдерживают для накопления полония. Часто для целей экстракционного выделения полония используется хорошая растворимость хелатных комплексов этого элемента в органических растворителях (например, соединения с ТТА, дитизоном).

Для разделения RaD и Po либо проводят анодное выделение полония на платине, либо осаждение PbS сероводородом, а также кристаллизацию бромидов из концентрированных растворов НВг. Извлечение может быть проведено экстракцией из солянокислой среды органическими растворителями (ацетилацетоном, трибутилфосфатом и др.). Часто для целей экстракционного выделения полония используется хорошая растворимость хелатных комплексов этого элемента в органических растворителях (например, соединения с ТТА, дитизоном).

Металлический Ро получают термическим разложением в вакууме сульфида PoS или диоксида (PoO₂)_х при 500 C.

Для выделения полония из больших количеств облученного висмута используются вакуумная сублимация, а также методы, основанные на процессах экстракции или соосаждения полония с носителями из расплавленного висмута. Процесс экстракции полония из расплавленного висмута при 400—500° С гидроксидом натрия в инертной атмосфере является технологическим способом извлечения его из облученного висмута. За две последовательные экстракции этим методом удается извлечь 99,5% полония. Методы ионообменного отделения полония от других элементов, в частности от теллура, основаны на образовании устойчивых ацидокомплексов типа PoX^{2-} 6. Для этой цели могут быть использованы как

На практике в граммовых количествах нуклид полония 210 Po синтезируют искусственно, облучая природный 209 Bi нейтронами в ядерных реакторах. Получившийся 210 Bi за счет β -распада превращается в 210 Po:

$$^{209}Bi(n,\gamma)^{210}Bi \xrightarrow{\beta^-,5,013 \ cym} \xrightarrow{}^{210}Po.$$

 209 Ро получают бомбардировкой висмута протонами на циклотроне по реакции: $^{209}{\rm Bi} + {\rm p} \rightarrow ^{209}{\rm Po} + {\rm n}$

209
Bi + p \to 209 Po + n

Однако при этом образуется ²⁰⁹Pb (T=3,3 час) - одна из самых трудноудаляемых примесь к полонию.

Основным методом определения полония является радиометрический, основанный на регистрации α -излучения ²¹⁰Po. Массы полония более 1 мкг могут быть определены с помощью γ -счета (ll-10⁻³% распада ²¹⁰Po, $E_{\Upsilon} = 0,803$ МэВ) или калориметрически (удельное тепловыделение ²¹⁰Po составляет около 140 Вт/г). Преимущества этих методов определения полония заключаются в том, что они не требуют разрушения образца.

3.4 Применение

Радиоактивные источники ²¹⁰Ро используются как в научных исследованиях, так и в технике.

Во время работы над Манхеттенским проектом по созданию атомной бомбы (США) полоний-бериллиевый нейтронный источник предполагалось использовать в качестве запала атомной бомбы. Нейтроны в таком источнике получаются в результате взаимодействия альфа-частиц от распада 210 Ро с бериллием, реакция 9 Ве(x,n). Однако в последствии от такого решения отказались.

Полоний применяют для изготовления компактных и очень мощных не обладающих γ -излучением источников нейтронов. Для этого его сплавляют с элементом, имеющим изотопы с высоким сечением (α ,n)-реакции, например, с бериллием или бором. Это герметичные металлические ампулы, в которые заключена покрытая полонием-210 керамическая таблетка из карбида бора или карбида бериллия. Такие нейтронные источники легки и портативны, совершенно безопасны в работе и очень надежны. Например латунная ампула диаметром два и высотой четыре сантиметра ежесекундно дает до 90 миллионов нейтронов. Полоний-бериллиевые генераторы нейтронов используются в качестве источников энергии в космических исследованиях. Изотопные генераторы электроэнергии на 210 Ро успешно применяли на спутниках связи «Космос-84» и «Космос-85».

Удельное энерговыделение полония велико — $140~{\rm Batt/r}$. Капсула содержащая $0.5~{\rm r}$ полония нагревается до $500^{\rm o}$ С. ($1~{\rm cm}^3~^{210}$ Ро выделяет $1320~{\rm Bt}$ тепла). Эта мощность весьма велика, она легко приводит полоний в расплавленное состояние, поэтому его сплавляют, например, со свинцом. И хотя эти сплавы имеют заметно меньшую энергоплотность ($150~{\rm Bt/cm}^3$), тем не менее более удобны к применению и безопасны. Такие сплавы используются для создания в термоэлектрических источниках, которые в частности применяются в космических аппаратах. Например у советского лунохода для обогрева приборного отсека находился полониевый обогреватель.

Полоний также используется в устройствах для снятия статического электричества. В некоторых устройствах такого рода может содержаться полоний с активностью до 500 мкКи (около 0.1 микрограмм). Этого количества теоретически достаточно, чтобы убить 5000 человек.

Полоний-210 может послужить в сплаве с литием-6 веществом, которое способно существенно снизить критическую массу ядерного заряда и послужить своего рода ядерным детонатором. Поэтому полоний является стратегическим металлом, должен очень строго учитываться, и его хранение должно быть под контролем государства ввиду угрозы ядерного терроризма.

Полоний также применяется в электродных сплавах автомобильных свечей зажигания для уменьшения напряжения возникновения искры, а также для α -активационного анализа. Небольшие количества полония используют для изучения радиационно-химических процессов в жидкостях под действием α -излучения на живые организмы.

3.5 Санитарно-гигиенические аспекты

При работе с полонием приходится соблюдать особую осторожность - это один из самых опасных радиоэлементов. Хотя полоний-210 излучает только альфа-частицы, брать его руками нельзя, результатом будет лучевое поражение кожи и, возможно, всего организма: полоний довольно легко проникает внутрь сквозь кожные покровы. Элемент №84 опасен и на расстоянии, превышающим длину пробега альфа-частиц. Его соединения саморазогреваются, переходят в аэрозольное состояние и заражают воздух. Поэтому работают с полонием лишь в герметичных боксах.

Максимальная допустимая дозовая нагрузка на организм при попадании 210 Ро внутрь всего 0.03 мкКи $(6.8^{\circ}10^{\circ}1^{\circ})$ г). При одинаковом весе 210 Ро в $2.5^{\circ}10^{11}$ раз токсичнее, чем синильная кислота. Попав в организм человека, полоний через ток крови распространяется по тканям. Полоний выводится из организма в основном вместе с калом и мочой. Больше всего его выводится в первые несколько дней. За 50 дней выводится около половины попавшего в организм полония. Наличие полония у зараженных им людей идентифицируется по слабому гамма-излучению выделений. Попадание внутрь организма человека одной стотысячной милиграмма полония в 50% случаев приводит к летальному исходу. Полоний весьма летучий металл, на воздухе за 45 часов 50% его испаряется при температуре 55° С.

Удельная активность ²¹⁰Po составляет 4,5 кюри/мг, что соответствует 10¹³ распадов/мин.мг, а максимальное количество ²¹⁰Po, допустимое для организма человека - 0,02 мккюри, т.е. работа с миллиграммовыми количествами полония опасна. В экспериментах с полонием необходимо учитывать также радиационные эффекты, происходящие под действием α-излучения: разложение растворителя, разрушение

частиц твёрдого осадка, увеличение хрупкости и разрушение стекла. Кроме того, при хранении образцов полония в запаянных ампулах в них происходит нарастание давления гелия (гелий, выделяемый источником полония в 1 кюри, оказывает давление на стенки капилляра объёмом 0,3 мм³, равное 0,4 атм).

ПДК в водоемах и в воздухе рабочих помещений $11,1\cdot10^{-3}$ Бк/л и $7,41\cdot10^{-3}$ Бк/м³.

При работе с открытыми и жидкими препаратами полония существует реальная возможность выделения газообразных летучих продуктов. Особенно опасными для загрязнения окружающей среды являются различные операции, связанные с возгонкой металлического полония, а также с переработкой галогенидов и гидрида.

При работе электростанций, работающих на органическом топливе, например, угле и сланце, с летящей золой в атмосферу поступают естественные радионуклиды, в том числе полоний. Сланцевые и угольные электростанции равной мощности обуславливают эквивалентную дозу облучения легких у жителей окрестных районов в пределах 0.01—0.2 мЗв/год, что составляет не более нескольких процентов естественного фона. Основной вклад в дозу на легкие за счет выбросов электростанций вносит 210 Po, а естественное облучение в основном формируется за счет коротко-живущих продуктов распада 222 Rn.

В среднем за сутки в организм человека с пищей поступает $3,7-10^{-2}$ — $3,7-10^{-1}$ Бк 210 Ро. В регионах, где человек потребляет пищу морского происхождения, а также питается мясом северных оленей (карибу) наблюдается повышенное поступление 210 Ро в организм: 2,2-11,1 Бк/сут. Курение увеличивает поступление 210 Ро в организм человека, поскольку радионуклид переходит в воздушную среду при температуре сгорания табака. В сигарете содержится 7 (3 — 24) мБк 210 Ро. Из этого количества при курении в пепле остается 3 мБк, а в табачный дым переходит 4 мБк. При этом в легких курильщика, выкуривающего 10—60 сигарет в сутки, создаются концентрации 210 Ро 1,66 мБк/г, что выше, чем у некурящих в 7—9 раз, и соответствует дозам 0,027—0,04 мГр/год. Поступление 210 Ро при курении в 10 раз выше, чем плутония, даже в период максимальных выпадений последнего.

В зубах и других костях жителей РФ содержание 210 Ро составляет 1,9 Бк/кг. Клетки костной поверхности за счет 210 Ро получают дозу 29•10⁻⁶ в Гр/год, клетки костного мозга — 3,9-10⁻⁶ в Гр/год. Общее содержание 210 Ро в организме человека составляет 18,5 Бк, из них 11,8 Бк в костях, 6,3 Бк в мягких тканях. На долю пищевого поступления приходится 2,78 Бк, а 85 % общего содержания 210 Ро обусловлено распадом 210 Рb. У пастухов, питающихся мясом северных оленей, во всех тканях 210 Ро содержится в 10 раз больше. Коэффициент всасывания 210 Ро из ЖКТ при поступлении его в составе белков составляет 0,43, с минеральными солями — 0,33; наименьшая величина получена при поглощении 210 Ро лишайниками — 0,125. Величина всасывания из ЖКТ человека равна 0,2.

Табл. 6. Средние тканевые дозы, обусловленные излучением 210 Po, при нормальном и повышенном поступлении радионуклида (в м Γ р/год).

Группа населення	Гонады	Легкие	Қостный мозг	Костные клетки			
Регио	Регионы с нормальным поступлением						
Некурящие Курящие	0,006 0,009	0,003 0,009	0,007 0,009	0,015 0,022			
Регионы с повышенным поступлением							
Питающиеся мясом северных оленей (карибу)	0,06	0,04	0,05	0,075			

Основное количество полония фиксируется в поверхностном слое кожи толщиной 500 мкм. Депо этого излучателя в коже являются придатки, в частности волосяные фолликулы. Через кожные покровы человека за первые сутки всасывается 2 % нанесенного полония. К исходу суточной экспозиции отложение ²¹⁰Ро в организме резко возрастает и достигает 0,21%. При повреждении кожного покрова резорбция ²¹⁰Ро усиливается. Всасывание ²¹⁰Ро через ссадины увеличивается в 40 раз, из кожномышечных ран — в 750 раз по сравнению с резорбцией через неповрежденную кожу. Еще интенсивнее ²¹⁰Ро всасывается из мышечной ткани (20% общего количества в течение первого часа). При ожоге I и II степени за 1 ч контакта радионуклида всасывается в 6 раз больше, чем за это же время через неповрежденную кожу, что обусловлено активной гиперемией участка ожога. При ожоге II степени поступление полония в организм увеличивается в 2 раза. При ожоге III степени поступление полония в организм резко снижается (0,0015 % нанесенного количества или 11% величины всасывания через интактную кожу).

Наибольшее количество 210 Ро (на 1 г ткани) наблюдается в почках, крови и лимфатических узлах. Полоний элиминируется с калом в 10—20 раз больше, чем с мочой. При поступлении с пищей 210 Ро наибольшая экскреция с мочой наблюдается через 24 ч, с калом — через 3 сут. Из всего поступившего полония доли 0,1; 0,1; 0,1 и 0,7 переносятся в печень, почки, селезенку и все другие ткани соответственно. Из организма человека 210 Ро выводится с T_6 =80 сут.

Коротко остановимся на токсическом действии полония. Для животных ²¹⁰Ро - один из наиболее токсичных радионуклидов. При введении полония собакам в количестве 1,85—6,66 кБк/г у животных

развивается острая лучевая болезнь с гибелью через 10 -25 сут. При введении полония в количестве 0,092 кБк/г развивается хроническое поражение, также приводящее к 100% гибели животных через 6—12 мес. При введении ²¹⁰Ро в количествах, вызывающих острое или подострое течение лучевой болезни, состояние животных в первые дни (5—7 сут) не отличается от нормального. В дальнейшем они становятся вялыми, снижается аппетит, падает масса тела. Часто отмечаются поносы со слизью или примесью крови и рвота, появляется сильная жажда. У животных развиваются светобоязнь, конъюнктивит, ринит с кровянистыми выделениями; на коже, слизистой оболочке рта и конъюнктиве глаз обнаруживаются точечные кровоизлияния; шерсть теряет блеск, становится взъерошенной. Собаки перестают ухаживать за собой. В финальной части заболевания собаки лежат неподвижно, не реагируют на раздражение, отказываются от пищи, теряют в массе до 30—40 % по отношению к исходной и погибают.

При хроническом (в течение 6 мес) введении собакам ²¹⁰Po в количестве 3,7- 10⁻⁵ кБк/г к концу 1 и 2 мес. отмечены небольшое снижение массы тела, кишечные расстройства, дистрофические нарушения. Введение ²¹⁰Po в количестве 3,7-10⁻⁷ кБк/г не приводит к каким-либо выраженным клиническим нарушениям. К числу отдаленных последствий относят циррозы печени, нефросклерозы, дисгормональные нарушения, гиперплазия передней доли гипофиза, щитовидной железы, а также опухоли толстого кишечника, семенников, предстательной железы, надпочечников, подкожной клетчатки, гипофиза, щитовидной железы, молочных желез и матки. У животных с циррозами печени возникают аденомы и аденокарциномы печени, исходящие из эпителия ложных желчных путей. При подкожном введении собакам ²¹⁰Po в количестве 74 кБк/кг опухоли почек развиваются у 20% животных со средним латентным периодом 9,9 лет и кумулятивной дозе около 5,3 Гр. У 2 из 20 собак обнаружен рак мочевого пузыря. Риск развития рака почек у собак составляет 380-10⁻⁶ сГр⁻¹. Поступление ²¹⁰Po через дыхательные пути обуславливает возникновение опухолей легких. Основной тип опухолей — плоскоклеточный рак (50 % случаев).

Гигиенические нормативы определяют правила работы с полонием. Для 210 Ро группа радиационной опасности A, минимально значимая активность (M3A) = $3.7-10^3$ Бк.

Табл.7. Предельно допустимы концентрации ²¹⁰Ро для категории А (Р -растворимое соединение, НР – нерастворимое соединение, ДСА - допустимое содержание радионуклида в критическом органе, ПДП - предел годового поступления радионуклида в организм, ДКА - допустимая концентрация радионуклида в воздухе рабочей зоны).

Радио- нуклид	Состояние радионук- лида в соединении	Критический орган	ДС _А , бк	ПДП, Бк/год	ДК _А , Бк∕л
²¹⁰ Po	P	Селезенка Почки	4,1·10 ¹ 8,1·10 ¹	2,4·10 ⁴ 2,2·10 ⁴	=
	HP	Кость Легкие	7,4·10 ² 2,7·10 ²	3,1 · 10 ⁵ 0,9 · 10 ⁹	3,4-10-3

При оценке влияния 210 Ро на здоровье персонала основное внимание обращают на исследование наиболее чувствительных к действию полония органов, их функционального состояния, к числу которых относят прежде всего печень и почки. Обязательным является тщательное исследование крови. Накопление в организме 210 Ро в количествах, превышающих допустимые, является основанием для выведения человека из условий, где он может подвергаться дополнительному воздействию радионуклида.

При работе с закрытыми источниками γ -излучения мощность дозы за защитой не должна быть выше 0,014 мЗв/ч. В этом случае при 36-часовой рабочей неделе и постоянном пребывании в помещении экспозиционная доза не превышает 0,5 ПДД, т. е. 0,025 Зв/год. На расстоянии 0,5 м такую мощность дозы создает источник 210 Ро активностью 2590 ГБк. При работе с источниками 210 Ро активностью меньше указанной можно не принимать мер по защите от γ -излучения. Источник 210 Ро активностью 7,4 ГБк на расстоянии 0,5 м создает мощность дозы, равную среднему космическому фону 4,0-10⁻⁸ Гр/ч. Удельная активность составляет 1,66-10⁵ ГБк/г .

Неотложная помощь включает дезактивацию кожи водой с мылом, затем 5 % раствором унитиола или 5% раствором оксатиола, пастой-47. При попадании ²¹⁰Ро на кожу или в рану в количествах, не поддающихся дезактивации, показано иссечение пораженных участков. Внутрь - противоядие от тяжелых металлов (antidotum metallorum — 50 мл). Питье молока, слизистые отвары, яичный белок.