Содержание.
В последнее время значительное развитие получила клиническая диагностика заболеваний человека с помощью введения в его организм радиоизотопов в индикаторных количествах. Эта область медицины называется ядерной медициной. Визуализация с помощью радиоизотопов включает в себя ряд методов получения изображения, отражающих распределение в организме меченных радионуклидами веществ. Эти вещества называются радиофармпрепаратами (РФП) и предназначены для наблюдения и оценки физиологических функций отдельных внутренних органов. Характер распределения РФП в организме определяется способами его введения, а также такими факторами, как величина кровотока объёма циркулирующей крови и наличием того или иного метаболического процесса.
В данной лекции мы рассмотрим фундаментальные основы метода радионуклидной диагностики.
Радионуклидная диагностика заключается в анализе информации, полученной после введения в организм пациента определенного химического или биохимического соединения, меченного g-излучающим радионуклидом, с последующей регистрацией пространственно-временного распределения этого соединения в организме с помощью позиционно-чувствительного детектора гамма-излучения. Конечным результатом функциональных радионуклидных исследований является совокупность временных гистограмм (гамма-хронограмм). Полученные в лаборатории статические изображения изучаемого органа свидетельствуют о наличии и размере патологической области с аномальным распределением радиофармпрепарата.
Как уже упоминалось, изображения органов, избирательно концентрирующих препарат, получают методом сцинтиграфии. Пространственно – временная картина распределения радионуклида дает представление о топографии, форме и размерах органа, а также о наличии в нем патологических очагов. Радиоизотопная диагностика даёт менее чёткое изображение, чем КТ, ЯМР и УЗИ и имеет меньшее разрешение. Метод дает информацию о функциональной активности ткани.
Распределение радиофармпрепаратов зависит от кровотока и метаболической активности, поэтому методы ядерной медицины в большей степени направлены на функциональное исследование органов и систем, и в меньшей - на анализ их анатомо-морфологических особенностей. Этим методы ядерной медицины принципиально отличаются от рентгенологических и ультразвуковых методов исследования, которые фиксируют лишь анатомо-морфологические особенности органов или тканей. Функциональные изменения, намного опережающие анатомические, делают методы ядерной медицины уникальными как в ранней диагностике заболеваний, так и при динамическом наблюдении, при этом разовая лучевая нагрузка на пациента приблизительно в 100 раз меньше, чем при обычном рентгенологическом обследовании.
Методы ядерной медицины являются альтернативой так называемым методам функциональной диагностики (электрокардиография и электроэнцефалография), электрические феномены которых косвенно отражают кровоток и метаболизм. Прямое отображение кровотока, микроциркуляции и метаболизма (в том числе и объемное) миокарда и головного мозга методами ядерной медицины обеспечило стремительный прогресс кардиологии и неврологии. Радиофармпрепараты дают возможность получать изображения мест с аномальным метаболизмом, что позволяет визуализировать опухоли, воспаления или места тромбоза.
Методами изотопной диагностики производятся такие исследования, как перфузия миокарда, анги-вено-лимфография, визуализация щитовидной и слюнных желез, исследование опорожнения желудка и кишечного транзита, определение места и интенсивности кишечного кровотечения, визуализация печени и селезенки, визуализация почек с расчетом скорости клубочковой фильтрации, диагностика мочеточника, диагностика гипертонии, визуализация мошонки и яичек, визуализация скелета и костных метастазов, визуализация костного мозга, сцинтиграфия молочной железы и др.
К сожалению, в подавляющем большинстве подразделений радионуклидной диагностики медицинских учреждений используются субъективные и эмпирические методы анализа гамма-хронограмм, что приводит к диагностическим ошибкам в оценке функционального состояния исследуемых органов и физиологических систем. Однако объективная обработка гамма-хронограмм возможна только при привлечении априорной дополнительной информации о процессе транспорта используемого радиофармпрепарата в организме, формализованной в виде соответствующей математической модели. Определение (идентификация) неизвестных параметров модели по зарегистрированным гамма-хронограммам позволяет получать недоступную ранее диагностическую информацию в виде совокупности этих параметров, обладающих конкретным клинико-физиологическим смыслом. Поэтому перспективы развития функциональной радионуклидной диагностики, связаны с созданием методов математического моделирования процессов транспорта РФП. Сейчас разрабатывается комплекс математических моделей для исследований печени, костной системы, органной и тканевой гемоциркуляции; пакет программ идентификации системы физиологически содержательных параметров для получения принципиально новой диагностической информации; внедряется математический аппарат дифференциальных уравнений в частных производных, обеспечивающий возможность получения информации о пространственных изменениях физиологических параметров функционирования органов; разрабатываются алгоритмы и программы формирования функциональных изображений органов в терминах различных диагностических параметров; создается универсальный динамический фантом для проверки адекватности моделей.
Диагностика предназначена для решения таких задач, как определение показаний к проведению хирургической операции резекции печени у больных первичным раком; своевременная корректировка курсов лучевой терапии больных с метастазами опухолей различных локализаций; оптимизация плана прицельного лечения на клеточном уровне в послеоперационном периоде; точная локализация границ оперативного вмешательства при саркомах нижних конечностей; установление возможности отказа от калечащей операции ампутации нижних конечностей при саркоме после химиотерапии; определение пригодности кожного лоскута для пересадки при пластической операции восстановления молочной железы у женщин после мастэктомии по поводу рака молочной железы; выработка оптимальной тактики послеоперационного лечения и реабилитации больных после операции по поводу саркомы, в частности, установления возможности и сроков протезирования нижней конечности.
Современное развитие ядерной медицины характеризуется прежде всего разработкой уникальных новых радиофармпрепаратов, которые позволяют оценивать состояние различных органов и тканей организма на клеточном уровне. Наиболее перспективным является создание пептидных препаратов, меток рецепторов, которые позволяют проводить исследования патогенных заболеваний. Еще одним направлением является направленный транспорт лекарств, использование специализированных веществ для доставки терапевтических и диагностических доз непосредственно в нужное место. Использование этих радиофармпрепаратов требует оснащение соответствующей техникой в первую очередь эмиссионными и, особенно, позитронными томографами.
В этом плане в мире активно развивается позитронная томография, где существует около 30 наименований, уже коммерческих, препаратов для исследования в таких областях как кардиология, онкология, неврология. Разрабатываются новые эмиссионные томографы с двумя-тремя детекторами, которые позволяют проводить эмиссионную томографию за минимальное время и с высоким разрешением. Слабым местом в радионуклидной диагностике является относительно невысокое пространственное разрешение аппаратуры. В первую очередь это относится к эмиссионным томографам и в меньшей степени к позитронным. Поэтому тенденцией в развитии методов диагностики и аппаратуры является появление комбинированных методов и аппаратуры, соединяющей эмиссионную томографию с рентгеновской с ЯМР-томографией.
Первые аппараты такого класса были разработаны для исследования животных и представляли собой небольшой томограф совмещенный с рентгеновским и ЯМР томографом. Сегодня в мире появились первые подобные аппараты для пациентов - эмиссионный томограф совмещенный с рентгеновским томографом. И вторая разработка – это эмиссионный томограф совмещенный с рентгеновским томографом, позволяющий одномоментно видеть не только включение нашего препарата в какой-то патологический процесс, орган, особенно при онкологических заболеваниях, но и точно определить пространственную локализацию, по картине томографического среза.
Технической новинкой является блок совпадения для проведения позитронных исследований на эмиссионном томографе и блок коррекции поглощения, значительно улучшающий качество сцинтиграфических изображений и повышает точность диагностики. Разрабатываются специализированные гамма-камеры и гамма-томографы в первую очередь для таких областей как кардиология, онкология, исследований головного мозга и др.
Если говорить об оснащении отделений радионуклидной диагностики, то моногопрофильная больница или институт должны иметь универсальную томографическую гамма-камеру с большим полем для всех типов исследования и специализированную аппаратуру для исследования различных органов (сердца, головного мозга, щитовидной железы, сцинтимаммографии).
2.1 Критерии выбора радионуклида
Оптимальным нуклидом для радиофармпрепарата является тот, который позволяет получить максимум диагностической информации при минимальной лучевой нагрузке на больного. Желательно выбирать такой РФП, который быстро поступает в исследуемый орган и быстро выводится из организма, тем самым снижая лучевую нагрузку.
По физическим характеристикам он должен обладать коротким периодом полураспада. Быстрый распад нуклида также обеспечивает безопасность исследования.
К числу основных требований следует отнести наличие у нуклида g-излучения; удобного для наружной регистрации.
Пригодность РФП обуславливается еще и биологической характеристикой отражения функций организма или отдельного органа (например, избирательное поглощение 131I щитовидной железой). Однако этот критерий не является первостепенным, т. к. в настоящее время стало возможным включать радионуклиды в состав различных химических соединений, биологические свойства которых резко отличаются от используемого нуклида (например, распределение в организме 99Тс в соединении с технефитом, пентатехом, броммезидой и др. совершенно иное, чем собственно 99Тс).
РФП, вводимые внутрь организма, не должны содержать токсических примесей или радиоактивных веществ, которые в процессе распада образуют долгоживущие дочерние нуклиды.
2.2. Изотопы и радиофармпрепараты для радионуклидной диагностики
В практике радионуклидной медицинской диагностики наибольшее распространение получили следующие изотопы:
Золото (198Аu): Т = 2,7 дн. - источник b- - и g-излучений. Препарат коллоидного золота быстро поглощается из кровяного русла печенью, селезенкой и красным костным мозгом. Выведения 198Аu не происходит, он остается в клетках до полного распада (12-15 дней). Учитывая относительно высокую степень лучевой нагрузки на больного, вместо 198Аu чаще используют 99мТс. Применяется для сканирования печени, селезенки, лимфоузлов (в случае их опухолевого поражения); определения кровотока в печени.
Индий (133мIn): Т=99,3 мин – за счет изомерного перехода (гамма-излучение с энергией 329 кэВ, рентгеновское излучение 24-28 кэВ, электроны конверсии 365-392 кэВ) переходит в 113In. 113мIn генерируется распадом его материнского изотопа 113Sn (Т=115 сут). При внутривенном введении прочно связывается с g-глобулинами крови и циркулирует в организме. Поскольку в таком виде 113мIn является токсичным продуктом, то в клинической практике его используют в виде солей металлов. Генератор индия может быть использован в течении 6 месяцев. Редко используется в чистом виде, обычно входит в состав специальных меченых химических соединений – радиофармпрепаратов, получаемых на изотопных генераторах на территории госпиталя.
Йод (125I), Т = 60 дн. Является источником чистого g-излучения. Из-за большого периода полураспада применяется для метки гормонов, определяемых в сыворотке крови больного in vitro.
Йод (131I), Т = 8,1 дня, источник b-частиц и g-квантов с различным уровнем энергий. Участвует в обменных процессах в организме, в частности.. Критическим органом является щитовидная железа (здесь и далее: критический орган - это орган, ткань, часть тела, облучение которых причиняет наибольший ущерб здоровью данного лица или его потомству). Применяется в более чем в 90% всех терапевтических и диагностических процедур ядерной медицины, в частности, для определения функционального состояния и морфологических особенностей щитовидной железы.
Бенгальская роза - 131I. После введения препарат поглощается из крови клетками печени и вместе с желчью выводится в кишечник. Критические органы - печень и желчный пузырь. Применяется для изучения функционального состояния печени при гепатитах, циррозах, желтухах и опухолях.
131I-BSCN используется в качестве меченого препарата для определения содержания бора в опухоли in vivo и для диагностики опухолей.
Альбумин человеческой сыворотки, меченный изотопом 131I или 99мТс. Выпускается в виде микро и макроагрегатов с величиной частиц 20-80 мкм, которые задерживаются в капиллярах легких. Через 3-4 часа микроагрегаты под действием ферментов крови разрушаются и выводятся из организма. Применяется для определения показателей центральной и мозговой гемодинамики: минутного и ударного объемов сердца, скорости кровотока в большом и малом круге кровообращения, объема крови в легких, периферического кровотока, кровотока в головном мозге, скорости лимфотока.
Гиппуран - 131I после внутривенного введения быстро и избирательно выводится почками. Критические органы: почки и мочевой пузырь. Применение: оценка секреторно-выделительной функции почек, проходимости мочевыводящих путей, выявление количества остаточной мочи.
Йод (132I) является генераторным препаратом с Т = 2,3 часа, излучает только g-кванты с энергией 0,31 МэВ. Короткий период полураспада и отсутствие b-излучения уменьшает лучевую нагрузку на щитовидную железу почти в 200 раз по сравнению с 131I, что позволяет применять его у детей.
Ксенон (133Хе), Т = 5,3 дня, является источником g-квантов. Воздушно-ксенововая смесь применяется для определения нарушений проходимости спинного мозга при опухоли, менингите, сколиозе, объема остаточного воздуха в легких; регионарной вентиляции легких.
Самарий-153 (Т = 47,1 час) - b-излучатель
Самарий-153-оксабифор – фармпрепарат для лучевой терапии метастатических поражений скелета.
Стронций-89 (Т= 50,5 дн) источник b-частиц с максимальной энергией МэВ. Препарат «хлорид стронция-89», «МЕТАСТРОН» - паллиативное средство при костных метастазах. 89Sr является одним из наиболее современных и эффективных терапевтических радиоизотопов, который используется в онкологии для обезболивания, позволяя отказаться от наркотических веществ.
Таллий (199Tl), Т = 7,43 час, срок годности 14 час, производится на циклотроне, предназначен для сцинтиграфии с целью диагностики инфаркта миокарда (Т1-199-хлорид) и исследования кровоснабжения головного мозга (диэтилдитиокабамат, ДДК-Т1-199) в кардиологии. Радиофармпрепарат 199Tl-диэтилдитиокарбамат, способен стойко фиксироваться в структурах центральной нервной системы пропорционально кровотоку; используется для проведения томосцинтиграфии головного мозга с целью диагностики цереброваскулярной недостаточности. Этот индикатор дает возможность значительного снижения лучевой нагрузки на пациента.
Технеций (99мТс), T= 6 часов - дочерний нуклид 99Мо, который получается при b-распаде последнего в специальном генератор, является источником только g-квантов с энергией 140 КэB. Генератор представляет собой колонку, заполненную сорбентом с прочно фиксированным на нем материнским нуклидом 99Мо. Вымывание 99Тс в раствор составляют не менее 80%. Срок эксплуатации генератора 14 дней.
Технеций (99мТс) пертехнетат, 99мТс - пертехнетат проявляет себя в организме подобно йоду. Отличие заключается в том, что 99мТс - пертехнетат не включается в синтез гормонов, поэтому его можно использовать для определения функции щитовидной железы на фоне применения с лечебной целью препаратов, блокирующих синтез гормонов. В последние годы в радионуклидной диагностике широко используются стандартные наборы реагентов, связывающиеся с 99мТс и поставляющие его после внутривенного введения в определенный орган. Примером является генератор 99мTc на основе альбумина крови человека.
99мТс - ХИДА (ТСК-15) отличается быстрым проходом и высокой концентрацией в желчевыводящих протоках и желчном пузыре, что обусловливает их хорошую визуализацию при минимальной лучевой нагрузке. Критические органы: печень, желчный пузырь и кишечник. Применяется для динамической гепатосцинтиграфии в диагностике желчнокаменной болезни, холецистита, холангита, желчевыводящих путей.
99мТс - фитон избирательно накапливается в клетках печени и селезенки. При введении быстро элиминируется из крови с достижением максимального накопления в печени к 10-15-й мин. Критические органы: печень, селезенка и красный костный мозг. Применяется в диагностике очаговых поражений и цирроза печени.
99мТс - ДТПА (ТСК) - нефротропный препарат. При внутри венном введении быстро фильтруется клубочками почек и полностью выводится из организма за 24 часа. Максимальная концентрация препарата в почках достигается через 5-6 минут. Критические органы: почки и мочевой пузырь. Применяется для динамической сцинтиграфии почек в изучении клубочковой фильтрации и морфологии почек, мочекаменной болезни, туберкулезе почек, пиелонефрите, сахарном диабете.
99мТс - цитон - нефротропный препарат, фиксирующийся в проксимальных и дистальных отделах канальцев почек. Максимальная концентрация препарата в почках наступает через 3 часа. Критические органы - почки и мочевой пузырь. Применяется для статической диагностики опухолей и пороков развития почек.
99мТс - пирофосфат (ТСК-8) накапливается в костях, некротических тканях. Максимальная концентрация в костях достигается через 4 часа. Выводится почками. Критические органы: скелет и почки. Применяется в диагностике метастазов в кости, инфаркте миокарда.
99мТс-МАА (макроагрегаты альбумина сыворотки человеческой крови) после внутри венного введения задерживаются в капиллярах легких, вызывая их временную эмболию. При внутриартериальном введении МАА фиксируются в капиллярах того органа, который снабжается кровью из данной артерии. Критическим органом являются легкие или исследуемый орган. Применяется для выявления нарушений микроциркуляции артерии, закрытой травме груди.
Фосфор (32Р): Т = 14,2 дн. - источник b-частиц с максимальной энергией 1,7 МэВ и наибольшей длиной пробега в тканях 8 мм. Используется для диагностики злокачественных новообразований глаз, кожи слизистых оболочек, молочной железы, головного мозга (во время операции).
Отметим, что в настоящее время бурно развиваются исследования с препаратами на основе антител, пептидов и нуклеатидов, меченных различными радионуклидами, в основном 131I, 90Y, 111In. Ведутся исследования по использованию a- и b - излучателей.
Препарат «Астат-211 - метиленовый синий» обнаружил высокую эффективность при действии на клетки злокачественной опухоли меланомы человека – опухоли, которая быстро развивается в организме человека. В развитии радиофармпромышленности можно выделить два этапа. Первый - производство готовых радиофармпрепаратов. Второй начался в связи с появлением генераторных систем, которые дали возможность получать радиофармпрепарат с заданными свойствами непосредственно в лаборатории, — из сочетания радионуклида с набором реагентов. С этого момента в радиофармпромышленности выделилось два направления — производство генераторов и наборов к ним.
В последние годы проводятся новые разработки, в частности, препаратов самария-153, олова-117m, генераторов рения-188, в планах - создание генератора технеция, других препаратов и источников для медицины.
Следует помнить, что методы ядерной медицины предусматривает использование короткоживущих радионуклидов, которые невозможно перевозить на большие расстояния, и они должны быть применены в непосредственной близости от места их получения. Поэтому производство радиофармпрепаратов должно осуществляться или вблизи или на территории клиники.
2.3 Изотопы и препараты для позитронной эмиссионной томографии.
Для целей позитронной эмиссионной томографии используются чрезвычайно короткоживущие нуклиды. Получение из них фармпрепаратов представляет собой серьезную проблему: на производство изотопа, синтез меченого соединения (причем не простой, а направленный - изотоп должен быть введен в точно назначенное место в молекуле), доставку препарата к больному, введение препарата в организм человека и проведение анализа отводится несколько минут! Естественно, что в этом случае могут быть использованы только экспрессные методы синтеза. Обычно применяются не столько химические, сколько биохимические методики, причем и генератор нуклида (циклотрон) и фабрика меченых соединений располагаются на непосредственно на территории госпиталя или даже в здании лечебного учреждения.
Изотопы для позитронной томографии: Углерод-11, 11С, Т = 20,4 мин.; Азот-13, 13N, T = 10,0 мин.; Кислород-15, 15O, T = 2,1 мин.; Фтор-18, 18F, T = 109 мин.; Рубидий-82, 82Rb, T = 1,25 мин.
Двуокись углерода. Меченные радиоактивными изотопами вода и двуокись углерода используются для исследований локального кровоснабжения головного мозга.
Кислород [15O]-меченная вода и кислород используются для количественной оценки потребления кислорода миокардом и кислородной фракции выброса, а так же для измерения степени некроза в опухоли.
Вода [15O]-меченная вода и кислород используются для количественной оценки потребления кислорода миокардом и кислородной фракции выброса. [15O]-вода также используется как метка миокардиальной перфузии (контрастирующая с [13N]-аммиаком. Использование [15O]-воды имеет преимущество 100% фракции выброса в миокарде. Выброс не зависит от метаболизма, который потенциально изменяет фракции выбросов для других изотопов, таких как [82Rb] или [13N]-аммиак. Недостатком является высокая концентрационная активность [15O] в сосудах сердца, полостях сердца и легких. Поэтому трудно точно измерить концентрацию метки.
Азот-13 Т = 10,0 мин.
Аммиак [13N]-меченный аммиак используется для измерения кровотока. Метка двигается из сосудов в ткани с помощью активного транспорта (натрий-калиевый насос) и путем пассивной диффузии. После того как метка оказывается внутри клетки, она преимущественно метаболизируется по цепочке глутаминовой кислоты. [13N]-аммиак применяется как способ измерения региональной перфузии в миокарде как в норме, так и при патологии. Преимуществом [13N]-аммиака является его короткий период полураспада, что позволяет использовать его при повторных исследованиях. [13N]-аммиак быстро покидает кровяное русло и долго удерживается в тканях, что обеспечивает получение высококонтрастных поперечных изображений сердечной мышцы. Зачастую исследования с использованием [13N]-аммиака комбинируются с введением [18F]ФДГ, что позволяет сравнивать миокардиальный кровоток с метаболизмом глюкозы, диагносцировать несоответствие и рассчитывать индекс жизнеспособности сердечной мышцы.
Углерод-11 Т = 20,4 мин
Ацетат 11C-меченный ацетат используется для количественной оценки окислительного метаболизма. Основным источником питания миокарда являются жирные кислоты, поэтому данная метка полезна в оценке метаболического состояния сердца.
Карфентанил является агонистом мю-опиатных рецепторов, он в 8000 раз мощнее, чем морфин. [11C]-меченный карфентанил используется в позитронно-эмиссионной томографии для исследования опиатных рецепторов головного мозга.
Кокаин ПЭТ используется для идентификации и характеризации мест связывания опиатных веществ в головном мозге. [11C]-меченный кокаин применяется в исследованиях на человеке и обезьянах для изучения распределения и фармакокинетики данного агента. Например, было показано, кокаин быстро накапливается и выходит из полосатого тела и временная диаграмма данного процесса коррелирует с временной моделью кокаинового «кайфа». ПЭТ также используется для исследования биологических эффектов кокаина. Большие одноразовые дозы кокаина имеют слабо влияют на работоспособность допаминовых рецепторов D2 (что измерялось при помощи [11C]N-метилпипоперидола), в то время как хроническое употребление кокаина приводит к снижению функций данных рецепторов. У лиц, хронически злоупотребляющих кокаином, снижается метаболизм допамина (что измерялось при помощи 6-[18F]-фтор-L-допа)
Депренил. После внутривенного введения радиоактивного [11C]-депренила, проводится ПЭТ-исследование. Депренил эффективен для лечения ранних стадий болезни Паркинсона.
Лейцин. [11C]-меченные метионин и лейцин используются для качественной оценки потребления аминокислоты и синтеза белка, являясь таким образом индикатором жизнеспособности опухоли.
Метионин [11C]-меченные метионин и лейцин используются для качественной оценки потребления аминокислоты и синтеза белка, являясь таким образом индикатором жизнеспособности опухоли.
N-метилспиперонал. N-метилспиперонал (N-метилспироперидол) связывает допаминэргические D2 рецепторы. [11C]-меченный N-метилпиперонал применяется для исследования нейрохимического влияния различных веществ на допаминэргическую систему.
Раклоприд. [11C]-меченный раклоприд используется в позитронно-эмиссионной томографии для изучения функционирования допаминэргических синапсов. Раклоприд связывает допаминовые D2 рецепторы и является селективным, обратимым ингибитором D2 рецепторов.
Фтор 18 Т= 109 мин.
Галоперидол ПЭТ используется для изучения мест связывания галоперидола, широко используемого антипсихотического и снижающего беспокойство препарата. Галоперидол действует на допаминовые рецепторы можжечка.
Ион фтора Радиомеченный ион фтора [18F-] являлся стандартным агентом для клинических исследований костной системы. Схема накопления [18F-] схожа с таковой у технеция-99m-дифосфоната (распространенной метки при исследованиях на гамма-камере). При этом, нормальные костные структуры имеют равномерное накопление в скелете [18F-]. Оба [18F-] и [99mTc] имеют хорошую чувствительность как индикаторы патологии скелета, но имеют ограниченные возможности в плане патологической специфичности (например, и доброкачественные, и злокачественные процессы стимулируют остеобластную активность и повышение накопления). Однако, из-за того, что [18F-] имеет большие различия в скорости накопления между мягкими тканями и костями скелета по сравнению с [99mTc]-дифосфонатом, позитронно-эмиссионная томография всего тела будет более анатомически и количественно точной, чем такое же исследование на гамма-камере.
Фтордеоксиглюкоза [18F]-меченные ПЭТ метки используются в неврологии для изучения метаболизма, нервной передачи и клеточных процессов. L-[18F]-допа применяется для исследования распределения запасов медиатора и исследования болезни Паркинсона.
Фторэтилспиперонал [18F]-меченные ПЭТ метки используются в неврологии дя изучения метаболизма, нервной передачи и клеточных процессов. [18F]-меченный фторэтилспиперонал является радиолигандом, который используется для исследования D2-допаминовых рецепторов. ПЭТ исследования допаминэргической функции используются для изучения гормональных эффектов, процесса старения и нейропатологических состояний, таких как болезнь Паркинсона и шизофрения.
Фторурацил [18F]-меченный фторурацил используется для измерения доставки препаратов применяемых при химиотерапевтическом лечении рака.
Рубидий-82, Т = 1,25 мин. 82Rb используется при проведении исследований миокардиальной перфузии. Короткое время полураспада (Т=76 с) позволяет проводить парные стресс-исследования с высокой скоростью. Одной из отличительных особенностей данной метки является то, что она может быть произведена без циклотрона из генераторной колонки. Однако существуют и ограничения, из-за низкой разрешающей способности изображений связанной с относительно высокой дальностью полета позитронов от данного эмиттера. 82Rb используется для определения недостаточности гематоэнцефалического барьера. Короткое время полураспада 82Rb для получения статистически значимых изображений требует применения высокоэффективных томографов, но зато обеспечивает возможность проведения серий измерений у одного пациента, т.е. возможность изучения кратковременных изменений, вызванных препаратами.
Короткоживущие радионуклиды эффективно используются в препаратах с высокой удельной активностью, оказывающих малую дозовую нагрузку на органы пациента. Их производят либо на специальных генераторах, представляющих собой долгоживущий радионуклид, из которого образуется короткоживущий радионуклид – действующее начало фармпрепарата, либо на ускорителях ионов, например, циклотронах.
Радионуклидные генераторы предназначены для получения короткоживущих радионуклидов. Их работа основана на принципе образования дочернего короткоживущего радионуклида в результате распада долгоживущего родительского радионуклида. Так как существует различие между химическими свойствами дочернего и родительского нуклидами, то возможно их разделение в генераторной установке, и получение продукта с оптимальными характеристиками.
Важность радионуклидных генераторов состоит в том, что получение короткоживущих радионуклидов является задачей несложной и безопасной для персонала, генераторы легко транспортабельны, что дает возможность наработки изотопа непосредственно в медицинских клиниках вдали от ядерного реактора и циклотронных установок.
В качестве типичного радионуклидного генератора остановимся на конструкции генератора индия-113m.
Генератор индия-113m предназначен для получения растворов хлоридных комплексов индия-113m ([113m(H206-nCln](3-n)+, где n = 0, 1, 2, 3 в растворе 0,05н соляной кислоты), которые применяются в ядерной медицине в диагностических целях при сканировании печени, легких, кровеносных сосудов, а также при идентификации опухолевых образований. Интерес к индию-113m вызван главным образом его благоприятными ядерно-физическими свойствами (период полураспада T=99,3 мин; энергия гамма-излучения Е=392 кэВ), а также тем, что материнский изотоп олово-113 имеет период полураспада (T = 115 суток), благодаря чему генератор индия-113m можно использовать в течение длительного времени.
Получение исходного радионуклида для генератора индия-113m - олова-113, проводят в ядерном реакторе путем радиационного захвата нейтронов ядрами олова-112. В связи с малым значением сечения реакции радиационного захвата, получение препарата Sn-ПЗ высокой удельной активности возможно лишь в облучательных каналах с большой плотностью потока тепловых нейтронов. Этому требованию удовлетворяют реакторы типа СМ-3 (г.Мелекесс, НИИАР).
В качестве стартового материала используется металлическое олово, обогащенное по изотопу Sn-112 до 98,93% , навеска которого запаяна в кварцевую ампулу. Облучение производится в реакторе со значением флюенса тепловых нейтронов 4·1014 н/см2сек. Удельная активность облученного материала составляет при этом не менее 30 Ки/г.
Действие генератора индия-113m основано на цепочке радиоактивных превращений:
Олово-113 претерпевает b-превращения (позитронный распад и К-захват) в результате которых получается дочерний метастабильный индий-113m. Период полураспада олова 113-115 дней
Индий-113m за счет изомерного перехода (Т = 99,3 мин) превращается в стабильный изотоп индия -113Iп. Изомерный переход сопровождается испусканием g-квантов с энергией 329 кэВ, а также рентгеновского излучения с энергией 24-28 кэВ и электронов конверсии с энергией 365-392 кэВ.
Таким образом, в процессе распада олова-113 в генераторе нарабатывается индий 113т. Накопление индия-113т описывается уравнением:
Индий-113m слабо удерживается на применяемом сорбенте и может быть вымыт (элюирован) из колонки соответствующим раствором (элюентом).
В основе разделения родительского олова-113 и дочернего индия-113т лежит метод хроматографии. В качестве адсорбентов в индиевом генераторе используют различные вещества - силикагели, активированные угли, гидратированный гидроксид циркония.
На Рис. 1 изображена принципиальная схема генераторной установки.
Органические сорбенты обладают более высокой сорбционной способностью, по сравнению с неорганическими, однако органические смолы допускают значительные проскоки радиоактивного олова вместе с нерадиоактивным в готовом 113mIn-элюате, а в неорганических сорбентах подобного не наблюдается. Кроме того, при использовании органических сорбентов для завершения процесса элюирования требуются большие объемы 0,05н НСL, что фактически снижает активность индия -113m до уровня, неподходящего для диагностического применения.
Рис. 1. Общий вид генератора индия-113m: 1. Колонка; 2. Радиационная защита; 3. Корпус генератора; 4. Линия элюента; 5. Линия элюата; 6. Пробка защитная; 7. Фильтр; 8. Фланец генератора; 9. Транспортная ручка; 10. Крышка; 11. Вкладыш предохранительный; 12. Флакон с бензиновым спиртом
Наиболее оптимальными характеристиками обладает сорбент ZrO2·nH2O. Он обладает средними сорбционными возможностями, но при этом достаточно сравнительно небольшого объема элюента для полного вымывания 113mIn, так же в продукте отсутствуют радиоактивные примеси. Кроме того, используются силикагели различного состава и структуры. Они наряду с хорошими сорбционными показателями обладают относительной дешевизной, по сравнению с гидроксидом циркония.
Для улучшения адсорбционных свойств к сорбирующему материалу добавляют соли тяжелых металлов таких, как церий, титан, марганец, хром. При прокаливании на воздухе соли этих металлов образуют оксиды типа МеО2. Эти соединения улучшают значения поверхностного потенциала сорбирующего материала и его структуру, что приводит к повышению сорбционной способности сорбента. Для генераторов индия наиболее оптимальными свойствами (в качестве модифицирующего материала) обладает церий.
Для контроля качества элюатов из радиоизотопных генераторов используют такие методы анализа, как радионуклидный, физико-химический, атомно-эмиссионный (спектральный), биологический (включая контроль стерильности).
Рис.2 Аппаратура для производства фармацевтических радионуклидов на циклотроне, состоящая из трех блоков: циклотрона, биологического синтезатора, в котором радиоизотопы присоединяются к биологическим молекулам и компьютера, управляющего всеми процессами.
Циклотрон состоит из двух полых полукруглых металлических электродов (называемых дуантами), которые расположены между полюсами большого электромагнита (не показан на рисунке). Дуанты разделены между собой узким зазором. Вблизи от центра дуантов располагается источник ионов (как правило электрическая дуга в газе), который служит в качестве генератора заряженных частиц.
Рис. 3. Схема циклотрона (показаны дуанты и источник ионов)
В момент работы, частицы, например ионы водорода - протоны (как показано на рисунке) импульсно генерируются источником ионов. Нить накала, расположенная в источнике ионов создает отрицательный заряд на ионах водорода путем присоединения двух электронов к водороду (на последующих иллюстрациях электроны изображены желтым цветом).
По мере того как отрицательно заряженные ионы влетают в вакуумную камеру они приобретают энергию благодаря высокочастотному переменному электрическому полю, индуцированному на дуантах.
По мере движения отрицательных ионов от источника, они подвергаются воздействию описанного электрического поля и сильного магнитного поля, генерируемого двумя магнитными полюсами (сверху и снизу от вакуумной камеры). Так как они являются заряженными частицами в магнитном поле, негативные ионы двигаются по циркулярной траектории.
Когда отрицательно заряженные ионы долетают до края дуанта и влетают в зазор, РЧ-осциллятор меняет полярность на дуантах. Отрицательно заряженные ионы отталкиваются по мере входа в ранее положительно, а теперь отрицательно заряженный дуант. С каждым проходом зазора, энергия частиц увеличивается, таким образом постепенно увеличивается орбитальный радиус и частицы двигаются по траектории расширяющейся к наружи спирали. Частицы отталкиваются от одного дуанта, двигаются по циркулярной траектории пока не начинают притягиваться другим дуантом заряд которого стал положительным. В результате, отрицательно заряженные ионы циркулярно двигаются по спирали к наружи.
Рис.4. Перезарядка дуантов
Поток отрицательных ионов направляется по направлению к первой карусели, расположенной между ускорителями и камерой мишени А. Карусели состоят из тонких угольных пластин, которые оделяют оба электрона от иона Н-. Когда отрицательные ионы теряют два электрона, они становятся ионами Н+ или протонами (на иллюстрации это показано утратой двух электронов желтого цвета).
Рис.5. Карусель
Путем перемещения экстрактора, управление которым реализуется при помощи компьютера, пучок протонов может быть разделен и направлен к двум различным мишеням. Разделяющая пластина располагается частично на пути пучка, таким образом, часть пучка экстрагируется. Оставшиеся частицы продолжают циркулярно двигаться, завершая дополнительный оборот.
Рис.6. Система разделения ионов водорода. Carbon stripping foil - отделяющая угольная пластина ion beam - пучок ионов
В системах отрицательных ионов, протонный пучок разделяется путем пропускания его (Н-) через тонкую угольную пластину, расположенную на одной из четырех каруселях. Разделяющие пластины отделяют оба электрона от каждого атома Н-.
Рис.8. Камера мишени
Когда отрицательно заряженные ионы водорода теряют оба электрона, они становятся ионами Н+ или протонами. Протоны проходят через пластину. Однако, несмотря на то, что их заряд сменился на противоположный, они все еще находятся под влиянием магнитного поля, двигаются по циркулярной орбите, по касательной к своей прежней траектории, от центра циклотрона. Этот поток протонов направляется к камере мишени. Разделяющие пластины имеют толщину от 5 до 25 микрон и имеют срок службы порядка 100 часов.
Камеры мишени интегрированы в общую систему производства радиоизотопов для оптимизации производительности обоих мишеней и других частей системы (циклотрона, линии переноса пучка, защиты и компьютерной системы управления). Камеры мишени компактны, что упрощает экранирование, установку и деинсталляцию для обслуживания и имеют простую и надежную конструкцию.
При подготовке к бомбардировке, внутрь камеры мишени помещают стабильный химический изотоп. Протонный пучок из циклотрона влетает в камеру мишени и путем ядерной реакции преобразует стабильный материал мишени в радиоактивный изотоп. Радиоизотопы нестабильны и распадаются, вызывая при этом эмиссию позитронов. Эта особенность и используется при визуализирующих исследованиях позитронно-эмиссионной томографии.
Вся работа системы производства радиоизотопов, включая циклотрон и биосинтезатор, управляется компьютером. Производство изотопа реализуется путем прохождения через серии меню на консоли управления. Оператор выбирает из меню требуемый для производства изотоп. Все остальные процессы проводятся автоматически. Управление системой производства радиоизотопов направлено на получение конечного продукта, а не на промежуточный ввод параметров для ускорителя. Существует отдельный режим технического обслуживания, предназначенный для мониторирования и контроля каждого компонента системы в отдельности. Полностью компьютерное управление позволяет значительно снизить требования к персоналу, оставляя больше времени для более важных задач.
Рис.9. Биосинтезатор
Показанный на иллюстрации биосинтезатор применяется для производства множества фармпрепаратов. Произведенные на циклотроне радиоизотопы переносятся в биосинтезатор, где они присоединяются к используемым в клинике биологическим маркерам.
Радиоизотопные изображения позволяют получать ценную диагностическую информацию. В ядерной медицине наиболее распространённым методом клинической диагностики является статическая изотопная визуализация в плоскости, называемая планарной сцинтиграфией. Планарные сцинтиграммы представляют собой двумерные распределения, а именно проекции трёхмерного распределения активности изотопов, находящихся в поле зрения детектора. В отличие от рентгенографии, в которой точно известно начальное и конечное положения каждого рентгеновского луча, при визуализации радиоизотопного источника можно определить положение лишь регистрируемого g -излучения. Следовательно, для получения изотопного изображения необходимо применять систему коллимации, которая способна выделять направление прихода g -квантов. Способ коллимирования излучения может быть механическим (например, с использованием свинцовых экранов) или электронным.
Временные изменения пространственного распределения радиофармпрепарата можно регистрировать, регистрируя многократные изображения за промежутки времени от нескольких миллисекунд до сотен секунд. Этот способ визуализации с помощью радиоизотопов, называемый динамической сцинтиграфией, является основным при базовых функциональных исследованиях внутренних органов и систем организма.
Поскольку планарные сцинтиграммы содержат информацию о трёхмерном распределении изотопов, во многих случаях трудно точно определить функциональные изменения в тканях, расположенных в глубине тела. Томографические исследования с применением системы многоракурсного сбора информации об объекте позволяют преодолеть большинство проблем, связанных с наложением информации при одноракурсном способе сбора данных. Метод эмиссионной компьютерной томографии (ЭКТ) имеет ряд аналогий с рентгеновской компьютерной томографией (РКТ); в тоже время существуют и некоторые важные отличия. Рентгеновская компьютерная томография основана на определении степени ослабления излучения тканями организма, тогда как при ЭКТ принципиально требуется коррекция ослабления гамма-излучения для регистрации распределения радиоактивности внутри тела. Кроме того, ограниченность скорости счёта при радиоизотопных исследованиях ведёт к ухудшению качества изображения по сравнению с изображением в рентгеновской компьютерной томографии.
В последние годы в медицине нашла применение однофотонная эмиссионная компьютерная томография (SPECT) – метод полипозиционной регистрации сцинтиграфического изображения, более информативный по сравнению с традиционной планарной сцинтиграфией. Кроме того, современное программное обеспечение радиодиагностических приборов позволяет рассчитывать объем исследуемого объекта (например, селезенки) на основе трехмерной реконструкции сцинтиграфических изображений, полученных в режиме SPECT.
5.1 Сцинтилляционные детекторы
В основе сцинтилляционных детекторов лежат вещества, излучающие свет в видимом диапазоне (или вблизи него) при поглощении энергии ионизирующего излучения. Они используются как для регистрации (счёта) частиц, так и для визуализации с помощью радиоизотопов. В Табл.1 представлены неорганические сцинтиляторы с большим атомным номером Z и, следовательно, с хорошей тормозной способностью для фотонов. Если световые эмиссионные характеристики сцинтиллятора согласуются со спектральной чувствительностью фотоумножителя (ФЭУ) и сцинтилятор прозрачен для излучаемого им света, то детекторы ионизирующего излучения, использующие комбинацию “сцинтиллятор – ФЭУ”, обеспечивают высокую чувствительность.
Табл. 1. Физические свойства неорганических материалов для сцинтиляторов
Материал сцинтиллятора | Плотность, г/см3 | Эффективный атомный номер Z | Относительный световой выход | Постоянная времени распада, нс | Длина волны излучения, нм |
Иодистый натрий (NaI) | 3,67 | 50 | 100 | 230 | 410 |
Германат висмута (BGO) | 7,13 | 74 | 12 | 300 | 480 |
Фторид бария (BaF2) | 4,89 | 54 | 5 15 |
0,7 620 |
195, 200, 310 |
Световой выход для большинства неорганических сцинтилляторов пропорционален поглощаемой ими энергии. Следовательно, при этом можно не только регистрировать g -кванты, используя сцинтилляционный счётчик, но также и определять их энергию. Разрешающая способность по энергии в диапазоне 100 – 200 кэВ для этих счётчиков составляет обычно 10 – 15%, благодаря чему сцинтилляционный счётчик позволяет отделять g-кванты, излучаемые организмом без рассеяния, от тех квантов, которые претерпели рассеяние с потерей энергии. Ограничения в применении сцинтилляторов для целей визуализации связаны в основном с их размерами.
Более распространены монокристаллы малого диаметра (10 см) и малой толщины (10 см); монокристаллы же большого диаметра (40 – 50 см) и толщиной более чем 1– 1,5 см трудны в изготовлении.
Сцинтилляционные счётчики можно использовать в качестве детекторов для визуализации с помощью радиоизотопов в области энергий 50 – 100 кэВ.
Гамма-камера – основной инструмент современной радионуклидной диагностики. Гамма-камеры предназначены для визуализации и исследования кинетики радиофармпрепаратов во внутренних органах и физиологических системах организма пациента с целью ранней диагностики онкологических, сердечно-сосудистых и других заболеваний человека. Гамма-камеры применяются в лабораториях радиоизотопной диагностики городских клинических больниц, научно-исследовательских медицинских институтов, онкодиспансерах и других медицинских учреждений.
Помимо диагностических исследований щитовидной железы, почек, печени и желчного пузыря, головного мозга, легких, сердца и др., современные гамма-камеры должны обеспечивать сканирование всего тела пациента (скелета) и компьютерную томографию внутренних органов для получения трехмерной информации.
Современная гамма-камера содержит многоканальный коллиматор, кристалл NaI(Tl) с большой площадью поверхности, световод для оптической связи кристалла с гексагональной матрицей ФЭУ и блока аналоговых электронных устройств, обеспечивающих определение координат и амплитуд сигналов. Все указанный компоненты заключены в свинцовый экран достаточной толщины, чтобы свести к минимуму фон от источников радиации, находящихся вне поля зрения камеры.
Коллиматор служит для селекции по направлению g -квантов, падающих на камеру. В коллиматоре с параллельными отверстиями (каналами) на сцинтиллятор попадают лишь те g-кванты, которые движутся перпендикулярно поверхности коллиматора. Коллиматор определяет также геометрическое поле зрения камеры и обусловливает пространственное разрешение и чувствительность всей системы. Для построения распределений радионуклидов с различной энергией g -излучения и достижения приемлемого компромисса между пространственным разрешением и чувствительностью применяют набор из коллиматоров нескольких типов. Помимо коллимоторов с параллельными отверстиями существуют и коллиматоры с единственным отверстием малого размера, предназначенные для визуализации малых, приповерхностных органов, а также коллиматоры со сходящимися или расходящимися отверстиями для получения изображений всего тела и органов средних размеров.
Пространственное разрешение и эффективность конструкции коллиматора с параллельными отверстиями можно связать с размерами коллиматора. Если L – длина отверстия, d – его диаметр, а z – расстояние от источника до коллиматора, то пространственное разрешение коллиматора Rc даётся выражением
(1) |
Отсюда следует, что пространственное разрешение улучшается с увеличением длины отверстий или их числа на единицу площади коллиматора при оптимальной толщине септы. Таким образом, чем большее число отверстий меньшего диаметра можно разместить на одной и той же площади, тем выше разрешение. Кроме того, весьма существенно то, что пространственное разрешение можно повысить, если уменьшить расстояние между источником и поверхностью коллиматора.
Геометрическая эффективность g коллиматора определяется выражением
(2) |
где t – толщина свинцовой септы между отверстиями, K – постоянная, зависящая от формы отверстия (например, для шестигранных отверстий, расположенных в узлах гексагональной матрицы, К = 0,26). Следует заметить, что в случае точечного источника, находящегося в воздухе, величина g не зависит от расстояния между источником и коллиматором, поскольку квадратичная зависимость в знаменателе (2) компенсируется ростом экспонированной площади детектора.
Собирающий коллиматор с большим числом отверстий даёт наилучшее сочетание высокого разрешения и чувствительности, достигаемое за счёт уменьшения поля зрения системы, а также, ценой определённых искажений изображения. Рассеивающий коллиматор с большим числом отверстий обеспечивает большое поле зрения, особенно при работе с гамма-камерой с малой площадью детектора. Однако в этой конструкции как пространственное разрешение, так и чувствительность снижены, а наличие зависимости увеличения от глубины приводит к искажениям в изображении.
Сцинтилляционные кристаллы. В большинстве гамма-камер применяются тонкие (толщиной 6 – 12 мм) одиночные сцинтилляционные кристаллы иодистого натрия, активированого таллием NaI(Tl). Эти кристаллы большого диаметра (до 50 см) излучаю свет в сине-зелёной области спектра (в близи длины волны 415 нм), что согласуется со спектральной характеристикой стандартных бищелочных ФЭУ. Они характеризуются большим атомным номером и высокой плотностью, причём их линейный коэффициент поглощения излучения при энергии 150 кэВ составляет 2,22 см -1. Таким образом в кристалле толщиной около 10 мм поглощается 90% g -квантов с энергией 150 кэВ. Время высвечивания для кристалла равно 230 нс, что позволяет достичь скоростей счёта порядка нескольких десятков тысяч отсчётов в секунду без изменения свойств сцинтиллятора. Кристалл NaI(Tl) имеет наибольший световой выход из всех наиболее известных неорганических сцинтилляторов (табл.1) и хорошо пропускает собственное излучение. Несмотря на гигроскопичность и, следовательно, необходимость герметизации, этот кристалл практически незаменим при энергиях g -излучения около 100 кэВ. Разрешение по энергии для тонких кристаллов NaI(Tl) составляет 10 – 12% при энергии 150 кэВ.
Световод. Из-за высокого коэффициента преломления кристалла NaI(Tl) равного 1,85, для оптического сопряжения сцинтиллятора и ФЭУ необходимо применять световод. Это уменьшает потери света при его прохождении к ФЭУ, поскольку световоды изготавливают из прозрачной пластмассы с коэффициентом преломления, близким к 1,85, а его форму тщательно подбирают в соответствии с конфигурацией фотокатода ФЭУ. Кроме того, применение световода позволяет уменьшить флуктуации в эффективности съёма света по поверхности сцинтилятора. В последнее время вместо световода стали применять микропроцессорную систему коррекции изобрадения.
Фотоумножитель. Оптимальной конфигурациец с точки зрения плотной упаковки фотоумножительных трубок (с круглым или гексагональным сечением) на поверхности круглого сцинтилляционного кристалла является гексагональная матрица, состоящая из 7, 19, 37, 61 и т.д. ФЭУ. Спектральная характеристика фотокатода ФЭУ согласуется со спектром светового излучения сцинтиллятора путём введения бищелочных материалов (таких, как SbK2Cs). Фотоумножительные трубки тщательно подбираются по коэффициенту усиления с тем, чтобы упростить регулировку ФЭУ для получения однородного распределения чувствительности по поверхности сцинтиллятора при приложении высокого напряжения и регулировке усиления ФЭУ.
Блок аналоговых электронных устройств. Для получения позиционной информации от аналоговых выходных устройств фотоумножительных трубок используется емкостная (а в последнее время и резистивная) схема. По относительной интенсивности выходных сигналов определяют координаты x и y сцинтилляционного события и создаю четыре сигнала (x+, x–, y+, y–) для формирования изображения на экране электронно-лучевой трубки (ЭЛТ) и (или) на запоминающем осциллографе. Полная интенсивность сигнала z (её не следует путать с пространственной координатой) даётся выражением
z = x++ x–+ y++ y– , | (3) |
А координаты x и y записываются в виде
(4) |
(5) |
Сигнал z подаётся на одноканальный амплитудный анализатор импульсов (ОАА), который имеет два уровня ограничения с тем, чтобы определить, соответствует ли пришедший сигнал ожидаемому сигналу от зарегистрированного g -кванта. Современные гамма-камеры оснащены двумя или тремя ОАА, что позволяет одновременно регистрировать несколько световых импульсов. При высоких скоростях счёта квантов аналоговые устройства могут перегружаться из-за взаимного положения сцинтилляционных сигналов от детектора. Кроме того, в системе начинают возникать сбои (пропуски импульсов) из-за наличия собственного времени восстановления электронных устройств гамма-камеры. Истинная скорость счёта (N) системы связана с наблюдаемой скоростью счёта (n) выражением
(6) |
где t – постоянная времени восстановления, которая приблизительно равна 4 мкс.
Свинцовый экран. Чтобы свести к минимуму регистрацию паразитного излучения из областей вне поля зрения коллиматора, сцинтилляционный кристалл и электронные устройства гамма-камеры помещают в массивный свинцовый экран. При разработке гамма-камер для уменьшения массы вращающихся частей приходится значительно уменьшать габариты защитного экрана. многие гамма-камеры снабжены экранами, которые достаточны лишь для минимальной защиты от низкоэнергетических g -квантов (с энергией менее 250 кэВ), и это вместе с использованием тонких кристаллов позволяет применять лишь низкоэнергетические радионуклиды (99Tcm, 111In, 123I, 201Tl). Основная современная тенденция развития гамма-камер – увеличение потока информации без повышения дозы радиофармпрепаратов, вводимых пациенту. Это позволяет сократить время исследования, улучшить качество изображения, а в ряде случаев – расширить функциональные возможности. Технически это достигается за счет увеличения площади поля зрения детектора, перехода от детекторов с полем зрения круглой формы к прямоугольной и увеличения числа детекторов. В настоящее время все ведущие производители и поставщики гамма-камер: Siemens, General Electric, Toshiba, Sopha Medical освоили производство и поставляют модели гамма-камер с двумя детекторами прямоугольной формы с размерами поля зрения не менее 350 - 510 мм. Цена этих гамма-камер – от 600 тыс.долларов и выше.
В зависимости от способа и типа регистрации излучений все приборы делят на шесть групп:
медицинские радиометры - для регистрации относительной радиоактивности в органе или в пробах биологических сред (радиометрия щитовидной железы, радиометрия гормонов в крови и др.);
медицинские радиографы - для регистрации динамики перемещения РФП в организме с представлением информации в виде кривых (ренография, гепатография, кардиография и др.);
дозкалибраторы - для измерения абсолютной величины активности РФП, вводимой пациенту;
счетчики всего тела - для измерения общей активности РФП в теле пациента (определение эффективного периода полураспада нуклида, оценка тканевого этапа йодного обмена и др.)
скеннеры, профильные скеннеры - для регистрации распределения РФП в органе или теле больного с представлением данных в виде рисунка (скеннограм) или кривых (определение участка повышенного накопления РФП при профильном сканировании);
сцинтилляционная g-камера, оснащенная ЭВМ - для регистрации динамики перемещения и распределения РФП с одновременным получением на дисплее ЭВМ изображения органа и кривых, отражающих его функцию. По своим функциональным возможностям заменяет радиограф и сканер.
Принципиальная схема устройства всех типов ядерно-медицинских приборов одинакова и позволяет выделить три части:
детектор - воспринимающая часть прибора, обращенная непосредственно к источнику излучения - пациенту, которому введен РФП. Сцинтилляционный детектор в качестве основных элементов имеет коллиматор, кристалл йодида натрия (сцинтиллятор), фотоэлектронный умножитель (ФЭУ). g-кванты РФП, попадая на детектор, вызывают в кристалле образование световых вспышек (сцинтилляций) низкой интенсивности. Преобразование слабого светового сигнала в электрический осуществляется ФЭУ;
электронная схема усиления сигналов от детектора;
регистрирующее устройство позволяет получить информацию на фотобумаге, цифровую или графическую запись на бумаге или дисплее ЭВМ.