7. ЭМАНИРОВАНИЕ ПРИ НАЛИЧИИ ТВЁРДОФАЗНЫХ ПРЕВРАЩЕНИЙ В ИССЛЕДУЕМОМ МАТЕРИАЛЕ

7.1 Спекание зёрен порошка

Эманационная способность как за счёт отдачи, так и за счёт диффузии однозначно связана с площадью открытой поверхности образца. Поэтому эманационный метод нашёл применение для измерения удельной поверхности высокодисперсных порошков и изучения характера её изменения в ходе спекания порошка.

Рис. 18. Изменение удельной поверхности порошка в ходе линейного нагрева образца: $K_s = 10^{10} \exp\left\{-\frac{20000}{RT}\right\}$, n – формальный порядок реакции спекания.

Скорость изменения удельной поверхности при спекании можно представить уравнением:

$$v = -\frac{1}{S_0} \frac{dS}{dt} = K_s \left(\frac{S}{S_0}\right)^n \quad (225)$$

где S₀ – площадь поверхности до начала нагрева, K_S – константа скорости спекания, п – порядок скорости реакции спекания.

В интегральном виде:

$$(S_0 - S_t)^{n-1} = nK_s t$$
 (226)

или

$$\lg \frac{S}{S_0} = -\frac{1}{n-1} \lg [K_s(n-1)(t+\beta)]$$
(226a)

где $\beta = \frac{1}{K_s(n-1)}$.

В соответствии с законом Аррениуса:

$$K_s = K_s^0 \exp\left(-\frac{E_s}{RT}\right)$$
(227)

Типичное изменение поверхности образца при спекании в ходе линейного нагрева приведено на. Рис 18.

В эманационном методе поток атомов эманации из образца связан прямой пропорциональной зависимостью с поверхностью образца (например, эмпирически установлено, что J = 0,74S. Тогда скорость

спекания
$$v = -\frac{dE}{dt}$$
, т.е. $-\frac{dE}{dt} = kE^n$ или $\lg \frac{dE}{dt} = \lg K_s + n \lg E$.

Из измерений при конкретной температуре найдём E(t), и, путём дифференцирования, $-\frac{dE}{dt}$. Построив

график $\frac{dE}{dt}$ от E, вычислим порядок спекания n (по тангенсу угла наклона прямолинейного участка). Имея

подобные данные для различных температур, получим энергию активации спекания [43].

Рассмотрим теперь спекание в ходе линейного нагрева.

Напомним, что в эманационном методе поток равен:

$$J = J_R + J_D = \frac{A\gamma R\rho}{4m}S + \frac{A\gamma S}{m}\sqrt{\frac{D}{\lambda}} = \gamma A (k_R + k_D)St \quad (228)$$

Рис. 19. Изменение эманирующей способности порошка при спекании в ходе линейного нагрева:

$$K_D = 1,182 \cdot 10^4 \exp\left\{-\frac{5000}{RT}\right\}, \ K_S = 10^{10} \exp\left\{-\frac{20000}{RT}\right\}; a - 10^{10} \exp\left\{-\frac{20000}{RT}\right\}$$

исходный масштаб; б – аррениусовские координаты, n – порядок реакции спекания.

где ү - коэффициент счёта эманации, А – активность, R – пробег

атомов эманации; ρ - плотность исследуемого вещества, m – навеска. Константа k_R не зависит от температуры.

Тогда:

$$S_{t} = \frac{J}{\gamma A (k_{R} + k_{D})}$$
(229)
$$\frac{dJ}{dt} = \gamma A (k_{R} + k_{D}) \frac{dS_{t}}{dt} = -\frac{\gamma A (k_{R} + k_{D}) J_{t}^{n}}{[\gamma A (k_{R} + k_{D})]^{n}}$$
(230)

Или

$$\frac{dJ}{dt} = -\frac{k_s}{\gamma A [k_R + k_D]^{n-1}}$$
(231)

С учётом аррениусовских зависимостей констант:

$$\frac{dJ}{dt} = -\frac{K_s^0 \exp\left\{-\frac{Q_s}{RT}\right\} J^n}{\gamma A \left[k_R + k_D^0 \exp\left\{-\frac{Q_D}{RT}\right\}\right]^{n-1}}$$
(232)

Таким образом, в ходе нагрева спекание зёрен порошка уменьшает поток эманации, а диффузия в ходе нагрева – его увеличивает. Поэтому график зависимости J(T), будет определяться относительным вкладом каждого из этих противоположно направленных процессов. Важную роль играет и порядок реакции: при n=1 диффузия не влияет на поток, и $Q_{9\phi\phi}=Q_S$, n<1 $Q_{9\phi\phi}\approx Q_S+Q_D$, при n>1 $Q_{9\phi\phi}\approx Q_S-Q_D$, при $Q_S=Q_D$ поток не зависит от температуры.

Типичные ситуации, возникающие в ходе нагрева при наличии спекания, приведены на **Рис. 19.** Картина несколько напоминает политермы эманирования дефектных сред, однако в данном случае тангенс угла наклона низкотемпературного участка равен таковому для высоких температур.

7.2 Дегидратация

Продолжение следует.