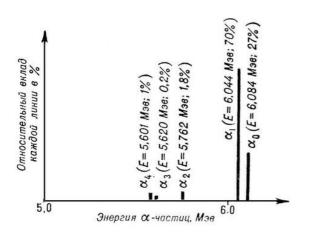
2.1. Корпускулярное излучение

К корпускулярному ионизирующему излучению относят альфа-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе

212 Bi 208 TI 20 взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.

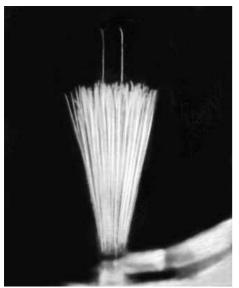

Рис.1 Схема распада ²¹²Ві.

2.1.1 Альфа-излучение

Альфа частицы (α - частицы) - ядра атома гелия, испускаемые при α - распаде некоторыми радиоактивными атомами. α - частица состоит из двух протонов и двух нейтронов.

Альфа излучение - *поток ядер атомов гелия (положительно заряженных и относительно тяжелых частиц).*

Естественное альфа-излучение как результат радиоактивного распада ядра, характерно для неустойчивых ядер тяжелых элементов, начиная с атомного номера более 83, т.е. для естественных радионуклидов рядов урана, и тория, а также, для полученных искусственным путем трансурановых элементов.



Типичная схема α -распада природного радионуклида представлена на **Puc.1**, а энергетический спектр α -частиц, образующихся при распаде радионуклида — на **Puc.2**. **Puc.3** иллюстрирует возможность образования диннопробежных α -частиц.

Рис.2 Энергетический спектр α-частиц

Возможность α - распада связана с тем, что масса (а, значит, и суммарная энергия ионов) α - радиоактивного ядра больше суммы масс α - частицы и образующегося после α - распада дочернего ядра. Избыток энергии исходного (материнского) ядра освобождается в форме

кинетической энергии α - частицы и отдачи дочернего ядра. α - частицы представляют собой положительно заряженные ядра гелия - $_2\mathrm{He}^4$ и вылетают из ядра со скоростью 15-20 тыс. км/сек. (α -частицы, открытые Резерфордом, двигались со скоростью 10^9 см/сек). На своем пути они производят сильную ионизацию среды, вырывая электроны из орбит атомов.

Рис.3. Длиннопробежные α-частицы

Пробег α - частиц в воздухе порядка 5-8 см, в воде - 30-50 микрон (одна миллионная доля метра), в металлах - 10-20 микрон. При ионизации α - лучами наблюдаются химические изменения вещества, и нарушается кристаллическая структура твердых тел. Результаты ионизации насыщенного парами спирта воздуха можно наблюдать в герметичной камере с положенным туда слабым источником α - излучения - следы α -частиц (треки) хорошо видны

по тонким линиям образовавшегося тумана на ионизированных атомах спирта. Так как между α -частицей и ядром существует электростатическое отталкивание, вероятность ядерных реакций под действием α - частиц природных радионуклидов (максимальная энергия 8,78 МэВ у 214 Po) очень мала, и наблюдается лишь на легких ядрах (Li, Be, B, C, N, Na, Al) с образованием радиоактивных изотопов и свободных нейтронов.