1. ВНУТРЕННИЕ ИСТОЧНИКИ РАДИАЦИИ

Рассмотрение методов расчета доз от внутренних источников ионизирующего излучения начнем с задач радиационной химии.

Пусть α - и β-излучающий радионуклид, не являющихся родоначальниками цепочки распада, равномерно распространен в веществе образца, причем излучение радионуклида поглощается в нем практически полностью. Тогда выделяемая энергия в единицу времени (мощность поглощенной дозы P):

$$P = a_0 * \overline{E}_{usn}$$
, MəB/(r·c)

или P = 1,602*10⁻¹⁰ а₀ $\overline{E}_{\text{изл}}$, $\Gamma \text{p/c}$,

где a_0 - удельная активность, $\overline{\bf Б}{\bf k}/{\bf \Gamma}$, на момент времени, соответствующий началу эксперимента, $\overline{E}_{u_{33}}$ - энергия α -излучения или средняя энергия β -спектра, $M \ni B$ /распад .

Для указанных источников интегральная поглощенная доза будет выражаться как:

$$D = \int_{0}^{t} P dt = \int_{0}^{t} a_0 e^{-\lambda t} \overline{E}_{usn} dt = a_0 \overline{E}_{usn} \frac{1 - e^{-\lambda t}}{\lambda}$$

где λ , t - постоянная распада и время облучения, соответственно. При малых λ ,t эта формула упрощается:

$$D = a_0 \overline{E}_{u_{3,n}} t$$

При полном распаде радионуклида ($t \rightarrow \infty$):

$$D = a_0 \frac{\overline{E}_{u3\pi}}{\lambda}$$

В практике обращения с радиоактивными отходами необходимо бывает рассчитывать дозу, поглощенную матрицей, в которой равномерно распределена смесь радионуклидов различной природы (γ- и β-излучатели, включающие материнские нуклиды, порождающие цепочку радиоактивного распада). Если форма сосуда, в котором находится радиоактивный материал, обеспечивает практически полное поглощение излучения, то полную энергию, выделяемую единицей массы материала в единицу времени цепочкой распада γ- и β-излучателей, для і-го материнского радионуклида можно записать в виде мощности поглощенной дозы:

$$P_{i} = a_{i,0}e^{-\lambda t} \left(\sum_{i,j} K_{\gamma,i} + \sum_{i,j} \overline{E}_{\beta} n_{\beta} \right), \quad \frac{M \ni B}{\varepsilon * \varepsilon},$$

где $a_{i,0}$ - удельная активность i-го материнского нуклида в момент постановки отхода на хранение или в момент окончательного захоронения, $\mathsf{Б} \kappa / \mathsf{r}$, λ_i - постоянная распада i-го материнского нуклида, $\mathsf{K}_{\gamma,i}$ - энергетическая γ -постоянная i-ого материнского и всех j-их дочерних радионуклидов, $\mathsf{M} \ni \mathsf{B} / \mathsf{(c. } \mathsf{Б} \kappa)$, \overline{E}_{β} - средняя энергия β -спектра материнского и всех дочерних радионуклидов, $\mathsf{M} \ni \mathsf{B} / \mathsf{распад}$, n_{β} - доля β -распада со средней энергией \overline{E}_{β} , t -время облучения (хранения) отхода, c . При выражении $\mathsf{a}_{i,0}$ в $\mathsf{K} \mathsf{u} / \mathsf{k} \mathsf{r}$ и $\mathsf{K}_{\gamma,i}$ в $\mathsf{M} \ni \mathsf{B} / (\mathsf{c} \cdot \mathsf{m} \mathsf{K} \mathsf{u})$ последняя формула принимает вид:

$$P_{i} = a_{i,0}e^{-\lambda_{i}t} \left(10^{3} \Sigma_{i,j} K_{\gamma,i} + 3.7 * 10^{10} \Sigma_{i,j} \overline{E}_{\beta,i} n_{\beta,i}\right), \quad \frac{M \ni B}{\kappa z * c},$$

Для того, чтобы получить значения мощности поглощенной дозы в $\Gamma p/c$, правую часть этого уравнения нужно умножить на $1,602\cdot10^{-10}$. Энергия, выделяемая смесью радионуклидов в единицу времени (мощность поглощенной дозы), равна

$$P = \sum_i P_i$$
.

Интегральную поглощенную дозу рассчитывают, суммируя данные по всем і-ым радионуклидам. Величину в скобках в правой части приведенных выше формул называют удельной энергетической постоянной цепочки і-ого материнского нуклида и обозначают \widetilde{A}_i . В **Табл. 1** представлены наиболее характерные для высокоактивных отходов нуклиды, их периоды полураспада, постоянные распада и величины энергетических постоянных.

Табл. 1 Удельные энергетические постоянные цепочки для некоторых радионуклидов

Нуклиды	(t _{1/2}) _i	λ _I , с ⁻¹ , материнского нуклида	\widetilde{A}_i , МэВ/(с [.] Бк)	\widetilde{A}_i , Мэв/(с' Ки)
⁹⁰ Sr+ ⁹⁰ Y	28 лет (64, 3 ч)	7, 848. 10 ⁻¹⁰	1, 126	4, 166. 10 ¹⁰
¹⁰⁶ Ru+ ¹⁰⁶ Rh	1 год (30 с)	2, 198. 10-8	1, 400	5, 183. 10 ¹⁰
¹³⁷ Cs+ ¹³⁷ Ba	30лет(2, 6 мин)	7, 325. 10 ⁻¹⁰	0, 243	9, 000. 10 ⁹
¹⁴⁴ Ce+ ¹⁴⁴ Pr	285сут(17 мин)	2, 814. 10-8	1, 187	4, 427. 10 ¹⁰