
3.1 Протонная радиоактивность

Начиная с 50-х годов физики методично приближались к открытию протонной радиоактивности ядер. Для того чтобы ядро, находящееся в основном состоянии, могло самопроизвольно испускать протон, необходимо, чтобы энергия отделения протона от ядра была положительной. Но таких ядер в земных условиях не существует, и их необходимо было создать искусственно. К получению таких ядер были очень близки российские физики в Дубне, но протонную радиоактивность открыли в 1982 году немецкие физики в Дармштадте, использовавшие самый мощный в мире ускоритель многозарядных ионов. Испускание протонов из основного состояния впервые наблюдалось для ядер ¹⁴⁷Tm и ¹⁵¹Lu.

Протонная радиоактивность - самопроизвольный распад нейтронодефицитных ядер с испусканием протона, проникающего сквозь кулоновский электростатический барьер путём туннельного эффекта. Этот вид распада приводит к уменьшению заряда и массового числа на единицу.

Испускание протонов из основного состояния ядра обнаружено для многих ядер, расположенных

вблизи границы протонной стабильности (B_p=0). Излучателями протонов из основного состояния являются ядра 151 Lu ($T_{1/2}$ =85 мс), 113 Cs ($T_{1/2}$ =958 мс), 147 Tm ($T_{1/2}$ =1050 мс) и др.

Рис.24. Протонная радиоактивность изомерного состояния ^{53m}Co

нулевой энергией отделения протона. С этой целью различные стабильные изотопы от эрбия (Z=68) до висмута (Z=83) облучались ускоренными ионами ⁵⁸Ni и ⁹⁰Mo. В реакции, идущей с образованием составного ядра ¹⁵⁴Hf

Для экспериментального наблюдения протонного было исследовано большое изотопов, расположенных вблизи границы с

$$^{58}_{28}\mathrm{Ni} + ^{96}_{44}\mathrm{Ru} {\rightarrow} ^{154}_{72}\mathrm{Hf} {\rightarrow} ^{151}_{71}\mathrm{Lu} + \mathrm{p}\,\mathrm{2n}$$

в энергетическом спектре вылетающих частиц, была обнаружена монохроматическая линия с энергией 1.19 Мэв. Анализ результатов эксперимента показал, что наблюдаемую линию следует приписать распаду изотопа ¹⁵¹Lu с испусканием протона из основного состояния ядра

$$^{151}_{71} \text{Lu}(J^P = 11/2^+) \rightarrow ^{150}_{70} \text{Yb}(J^P = 0^+) + p$$

В дальнейшем протонная радиоактивность была открыта у ядер 109 I и 113 Cs. Использование методики кремниевых детекторов дало целую группу протонных излучателей в диапазоне Z=69 - 75 ¹⁴⁶Tm, ¹⁵⁰Lu, ¹⁵⁶Ta и ¹⁶⁰Re. Сегодня известно свыше 30 изотопов, испускающих протоны из основного состояния ядер с Z>50 от ¹⁰⁵Sb до ¹⁷⁷Tl. Открылись новые возможности для систематического исследования этого явления. Наблюдение протонной радиоактивности является прямым указанием на то, что в этой области ядер проходит протонная граница связанных состояний. Изучение каналов распада ядер вблизи границы протонной стабильности обнаруживает ряд интересных закономерностей.

- 1. Выявлены случаи, когда оба легчайших изотопа данного элемента являются излучателями протонов (^{150,151}Lu, ^{146,147}Tm).
- Выявлен случай, когда легчайший изотоп 108 І является α -излучателем, в то время как более тяжелый изотоп 109 \tilde{I} испускает протоны из основного состояния.

Испускание протонов из изомерного состояния впервые было обнаружено на ядре ⁵³Co. Изотоп ⁵³Со получался путем бомбардировки изотопа ⁵⁴Fe протонами, ускоренными до 53 МэВ в реакции ⁵⁴Fe(p,2n)⁵³Co. Была обнаружена протонная радиоактивность с периодом полураспада 243 мс и энергией протонов 1.59 Мэв. Испускание протонов происходило из изомерного состояния ядра ^{53m}Co с энергией 3.19 МэВ с образованием конечного ядра ⁵² Fe в основном состоянии (**Рис.**). Основной вид распада из изомерного состояния - β^+ -распад. Это происходит потому, что β^+ -распад ядра 53m Co сверхразрешенный, так как образующееся в результате β^+ -распада ядро ⁵³ Fe является «зеркальным» по отношению к ⁵³Со. Доля распадов с испусканием протонов составляет около 1.5%, что соответствует парциальному периоду полураспада около 16 с.

Уменьшение энергии отделения протона при продвижении в область протоно-избыточных изотопов делает возможным радиоактивные распады с испусканием запаздывающих протонов (Рис.). Исходное ядро (Z,N) в результате β^+ -распада или е-захвата превращается в ядро (Z-1,N+1). Если энергия возбуждения E^* ядра (Z-1,N+1) больше энергии отделения протона B_p , то открыт канал распада возбужденного состояния ядра (Z-1,N+1) с испусканием протона.

Пример испускания запаздывающих протонов

$$17_{Ne} \xrightarrow{\beta^+} 17_F * \rightarrow 16_{O+p}$$

В настоящее время известно свыше 70 β⁺-радиоактивных ядер, излучателей запаздывающих протонов. В Табл. 5 приведены характеристики некоторых из них. В случае легких ядер область протонных излучателей находится относительно близко от долины стабильности. Поэтому излучатели запаздывающих протонов получают в реакциях типа (р, 2-3n), (³He,2-3n).

Таб. 5. Излучатели запаздывающих протонов

Изотоп	$T_{1/2}$, c	Q_b - E_p , Мэв	*P _p , %	Реакция
⁹ C	0.126	16.68	100	¹⁰ B(p,2n), ⁷ Be(³ He,n)
¹³ O	0.09	15.81	12	¹⁴ N(p,2n)
²¹ Mg	0.121	10.66	20	²³ Na(p,3n), ²⁰ Ne(³ He,2n)
³³ Ar	0.174	9.32	63	³² S(³ He,2n), ³⁵ Cl(p,3n)
¹⁰⁹ Te	4.4	7.14	3	⁹² Mo(²⁰ He,3n), ⁹⁶ Ru(¹⁶ O,3n)
¹¹¹ Te	19.3	5.1	0.12	¹⁰² Po(¹² C,3n), ⁹⁸ Ru(¹⁶ O,3n)
¹¹⁴ Cs	0.7	8.8	7 • 10 ⁻²	La(p,3pxn)
¹¹⁵ Cs	1.4	5.41	7 * 10 -4	La(p,3pxn)
¹¹⁶ Cs	3.9	6.45	6.6 * 10 ⁻³	⁹² Mo(³² S,3p5n)
¹¹⁸ Cs	16	4.7	4.4 • 10-4	La(p,3pxn)
¹²⁰ Cs	58	2.73	7 • 10 -8	La(p,3pxn)
¹⁸¹ Hg	3.6	6.15	1.8 * 10-2	Pb(p,3pxn)
¹⁸³ Hg	8.8	5.00	3.1 • 10-4	Pb(p,3pxn)

^{*} Рр - вероятность распада по протонному каналу

В последнее время (2005) появились сообщения, что у некоторых протонообогащенных (нейтронодефицитных) ядер наблюдается распад с вылетом нескольких протонов и более тяжелых заряженных частиц.

Испускание двух запаздывающих протонов было обнаружено при β^+ -распаде изотопа 22 A1. Эксперимент выполнен на пучке ускоренных ионов ³Не с энергией 110 МэВ.

24
Mg(3 He,p4n) 22 Al

и далее распадался (Рис. 25) по цепочке

$$22Al(T_{1/2} = 70 \text{ MC}) \xrightarrow{\beta^+, 2.9\%} 22Mg \xrightarrow{2p} 22Al$$

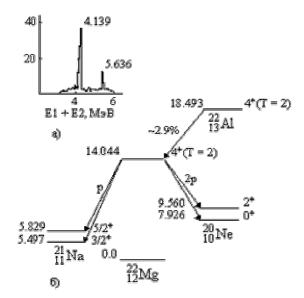


Рис.25. Испускание двух запаздывающих протонов при β^+ -распаде 22 Al. а - спектры протонов в режиме совпадений, б - цепочка распадов 22 Al

В.И.Гольданский предсказал двупротонную радиоактивность (одновременное испускание ядром двух протонов). Сейчас известен двупротонный распад ^{14}O (7.77) возбужденного состояния ядра образовавшегося в реакции $^{13}N(p,\gamma)$.

Ожидается открытие испускания дипротона - ²He из основного состояния ядра. Однако до сих пор оно не состоялось несмотря на то, что поиск проводился довольно интенсивно. Были подозрения, что такая ситуация реализуется в ядре ³⁹Ті, но они оказались безосновательными.