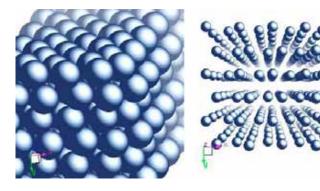
4. МЕТАЛЛИЧЕСКИЙ НЕПТУНИЙ

Впервые металлический нептуний был получен Фридом и Девидсоном в 1945 путём восстановления трёхфтористого нептуния парами металлического бария при температуре 1200° . в приборе, состоящем из двух тиглей из оксида бериллия. Металлический нептуний можно получить также восстановлением четырёхфтористого нептуния парами металлического бария или металлическим кальцием при температуре 740° в атмосфере аргона.

Получение металлического нептуния в крупных масштабах проводится нагреванием граммовых количеств NpF_4 с избытком металлического кальция, причём на каждый моль нептуния к исходной смеси добавляют 0,25-0,35 молей J_2 в качестве бустера; выход металлического нептуния составляет 99%.

Наиболее употребительные реакции:



$$NpF_4+2Ba [Ca] \rightarrow Np+2BaF_2 [CaF_2]$$

 $2NpF_3+2Ba [Ca] \rightarrow 2Np+3BaF_2 [CaF_2]$

Металл имеет серебристый цвет, по ковкости близок к урану и при кратковременной выдержке на воздухе покрывается лишь тонкой оксидной плёнкой. При высокой температуре на воздухе он быстро окисляется до NpO₂.

Металлический нептуний имеет три кристаллические модификации: α , β и γ . α -фаза устойчива от комнатной температуры до 278°, пространственная группа: Рпта (номер пространственной группы: 62), структура орторомбическая, параметры

ячейки: a: 666.3 pm, b: 472.3 pm, c: 488.7 pm, α : 90.000° , β : 90.000° , γ : 90.000° , плотность 20.45 г/см 3 . тетрагональная β -фаза существует от 278 до 570° (плотность при 3130 19.36 г/см 3), выше 577° превращается в γ -фазу, имеющую структуру центрированного куба (плотность при 600° 18 г/см 3). Структура ромбического α -Np находится в тесной связи со структурой α -U: её можно вывести путём сильной деформации объёмоцентрированной кубической (ОЦК) ячейки. В результате деформации координационное число понижается с 8 до 4 при длине связей 0.260-0.264 нм. Искажённая плотноупакованная решётка β -нептуния имеет, подобно InBi, слоистую структуру. Элементарная ячейка содержит четыре атома металла, кратчайшее расстояние Np-Np 0.276 нм. Наиболее короткая связь Np-Np в γ -Np (ОЦК, структура α -Fe), после экстраполяции данных к комнатной температуре оценивается как 0.297 нм. В **Табл. 9** приведены свойства металлического нептуния и температурные границы устойчивости фаз. Область устойчивости γ -Np уменьшается с увеличением давления. Температура плавления нептуния с ростом давления повышается. Тройная точка β -Np γ -Np — жидкость находится при 7250 и 32 кбар. По физическим свойствам металлический нептуний сходен с ураном и плутонием и занимает промежуточное положение между переходными и редкоземельными элементами.

Рис. 5. Кристаллическая структура металлического нептуния.

Металлический нептуний серебристого цвета, ковкий, сравнительно мягкий металл с точкой плавления 637° , $T_{\text{кип}}=3960^{\circ}$, давление пара lgp(бар)=-29610/T+5,10.

Табл. 9. Свойства металлического нептуния

Фаза	Граница устойчиво- сти, °С	Симметрия	Пара	Плотность,		
			a	b	c	Г/СМ ³
α	Комнатная температу- ра—278	Ромбиче- ская.	4.723	4.887	6.663	20.45 (25°)
β	278—570	Тетраго-	4.897	_	3.388	19.36 (313°)
γ	570—640	нальная. Кубическая.	3,52		_	18.00 (600°)

И.Н.Бекман НЕПТУНИЙ Учебное пособие Глава 4 http://profbeckman.narod.ru/Neptun.htm

Табл. 10. Некоторые характеристики металлического нептуния.

	Граница устойчивости, оС	Симметрия решетки		Параметры решетки, $\overset{\circ}{A}$			_	Таппа
Модиф икация			Пространств, группа	a	b	С	Плотность (рентген.) г/см ³	Теплота перехода, кДж/моль
α-Np β-Np γ-Np Жидкость ^г	< 280 280–577 577–637 > 637	Ромбич. Тетрагон. Кубич.	P42 ₁	6,663 4,897 ⁶ 3,518 ⁿ	4,723 -	4,887 3,388 ⁶	20,45 19,36 18,06	$5,607 \pm 0,544$ $5,272 \pm 0,167$ $5,188 \pm 0,126$

⁶ При 312 °C.

С сухим воздухом нептуний взаимодействует медленно. Растворяется в 1М соляной кислоте с образованием тетрахлорида, но для полного растворения необходимо добавлять в раствор окислители, например, азотную кислоту. Теплота растворения металлического нептуния в 1,55М соляной кислоте, содержащей небольшие количества гексафторосиликат-иона, равна 165,3 ккал.

Фазовые диаграммы плутоний-нептуний и уран-нептуний достаточно сложны и довольно сильно отличаются друг от друга, однако в обеих системах имеется область полной смешиваемости γ -Np с γ -U и γ -Np с ε -Pu. Наиболее интересная особенность фазовой диаграммы системы нептуний-плутоний состоит в чрезвычайно высокой растворимости нептуния в α - и β -плутонии. В этом отношении нептуний уникален. В системе уран — нептуний в интервале 48-75% Np существует кубическая δ -фаза, изоморфная с уран-плутониевой ζ -фазой и стабильная до 650° .

Восстановлением NpO_2 водородом высокой чистоты при 13000 в присутствии благородных металлов приготовлен ряд интерметаллических соединений с ними. Восстановлением NpF_3 с помощью Al или Be при $1100-1200^{\circ}$. получены интерметаллические соединения нептуния: $NpAl_2$ кубической сингонии, $NpAl_3$ кубический, $NpAl_4$ ромбический, $NpBe_{13}$ кубический. Интерметаллические соединения нептуния с алюминием изоструктурны с ответствующими соединениями U-Al. Другие соединения нептуния готовят прямым взаимодействием нептуния с элементами, например, с бором и кадмием.

в При 600 °C.

г Температура кипения 4175 °C.