ВЕСТН. МОСК. УН-ТА. СЕР.2. ХИМИЯ. 1995. Т.36. №3, с. 228-236

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАДИАЦИОННЫХ ПОЛЕЙ ЧЕРНОГО МОРЯ

И.Н.Бекман, А.В.Железнов, О.В.Дубовая

(Кафедра радиохимии)

Методами математического моделирования исследована эффективность метода статистических моментов при обработке и интерпретации результатов измерений радиоактивных полей морских регионов. Приведены результаты статистической обработки скорости счета фона, измеренного в ходе морской экспедиции 1993 г., проводившейся в северной и северно-восточных частях Черного моря. Рассчитаны основные моменты и построена карта Пирсона. Установлено, что согласно формальным критериям зарегистрированные выборки соответствуют распределению Пуссона. Более детальный анализ демонстрирует наличие некоторых систематических сдвигов в значениях эксцесса и крутизны в моде. Обсуждены возможные причины возникновения аномалий.

Как известно, жизнь на Земле возникла и развилась в условиях достаточно интенсивного радиационного облучения. Со временем из-за распада многих природных радионуклидов дозовая нагрузка на животный мир, в частности на человека, падала и сейчас составляет незначительную величину. Однако во второй половине XX в. интенсивность радиационных полей начала возрастать из-за широкого использования в науке, технике и искусственных радионуклидов, сооружения И эксплуатации медицине атомных электростанций, проведения испытаний ядерного оружия и т.п. Дозовая нагрузка на население в значительной степени зависит от распределения источников излучения в пространстве и от характера флуктуаций интенсивности радиационного поля во времени и пространстве. К сожалению, далеко не везде проведены систематические измерения флуктуаций радиационного фона. К таким областям относится Мировой океан в целом и, в частности, бассейны Азовского, Черного и Средиземного морей. Проведение радиационной съемки в этом регионе представляет большой интерес, так как для него характерна большая плотность населения и существует настоятельная необходимость создания долгосрочных прогнозов влияния радиационной обстановки на здоровье проживающих там людей.

Флуктуации радиационной обстановки морского региона связаны с переменной интенсивностью космического излучения, как самого по себе, так и вторичных излучений, возникающих из-за ядерных реакций, происходящих при взаимодействии космического излучения с солями, растворенными в морской воде. Многие из этих реакций сопровождаются испусканием нейтронов, в свою очередь активирующих окружающую среду. Другие факторы, изменяющие радиационную обстановку морского региона, связаны с процессом смешения пресных (речных) и соленых (морских) вод, особенно вод различной солености в заливах и эстуариях (Воды Азовского, Черного, Мраморного и Эгейского морей существенно отличаются по степени солености и, следовательно, по содержанию изотопа 40К – основного источника гамма-излучения в морской воде), с добычей и переработкой урановых руд на побережье, с эксплуатацией атомных электростанций, с авариями на АЭС и предприятиях ядерно-топливного цикла. В последние годы на радиационную обстановку в Черном море существенное влияние оказывают последствия Чернобыльской катастрофы.

Уже два десятилетия химический факультет МГУ осуществляет морские научноисследовательские экспедиции химико-экологической направленности в бассейнах Каспийского, Азовского, Черного, Мраморного и Эгейского морей, по рекам Дон и Волга [1, 2]. В ходе экспедиции 1993 г., проводившейся в северной и северо-восточной частях Черного моря, основное внимание было уделено измерению флуктуаций радиационных полей Черного моря.

Настоящая работа посвящена исследованию эффективности существующих методов математической статистики (в первую очередь – метода параметрических моментов) для

обработки и интерпретации результатов измерений флуктуаций радиационных полей морских регионов.

Рис.1 Типичное распределение интенсивности радиоактивного фона в регионе Черного моря (эксперимент №9, 10 и 11, табл.1): а – дифференциальная плотность распределения; б – интегральная плотность распределения; сплошная линия – теоретическая подгоночная кривая, рассчитанная в предположении справедливости нормального (гауссовского) распределения.

Экспедицию 1993 г. проводили как учебную студенческую практику на научноисследовательском судне «Донузлав» по маршруту: г.Севастополь – южное побережье Крыма – побережье Северного Кавказа (от Керченского пролива до г.Туапсе) – Керченский пролив – побережье Крыма (участок от г.Феодосия до п.Симеиз) – Днепро-Бугский лиман – г.Одесса – устье р.Дунай – южное побережье Крыма (п.Симеиз – г.Ялта) – г.Симферополь. Измерения γ радиационного поля осуществляли с палубы судна дозиметром-радиометром АНРИ-01-02 с автономным питанием от аккумулятора. Географические координаты замеров, время измерений и другие условия: движение судна (скорость 14 узлов), дрейф, якорная стоянка в открытом море, стоянка у причала порта, а также сквозная нумерация экспериментов приведены в **Табл.1**. Для дополнительной характеристики детектора были проведены измерения эталона (¹⁴¹Am, T_{1/2}=458 лет, E_{γ} =0,06; 0,017; 0,13 Мэв). Каждое измерение радиоактивности продолжалось в течение 100 с.

В настоящее время существуют различные подходы к обработке последовательностей встречаемых чисел. Сюда относят расчеты авто- и взаимокорреляционных функций, которые эффективно используются и при анализе сигналов с интермитансом, в частности так называемого фликкер-шума [3]. Однако на первом этапе целесообразнее применить к обработке результатов морской экспедиции стандартные статистические подходы, такие как метод параметрических моментов [4].

В ходе обработки результатов измерений, проводившихся по программе Statgrafics производства фирмы STSC, INC, экспериментальные данные перестраивали в виде гистограмм дифференциальных и интегральных распределений (**Puc.1**). Далее рассчитывали некоторые числовые характеристики распределения (**Табл.2**). Адекватность экспериментальных выборок известным статистическим распределениям проверяли по стандартным статистическим критериям.

Наиболее важными интегральными характеристиками распределения являются моменты случайной величины [4]. Начальный момент i-го порядка вычисляли по формуле

$$\mathbf{m}_{k} = \sum_{i=1}^{n} \mathbf{N}_{i}^{k} \mathbf{P}_{i}$$
(1)

где k=1, 2,... - порядок момента, n - число измерений, N_i - зарегистрированное число импульсов, P_i - вероятность набора числа импульсов N_i.

Таблиц	a 1								
Время и	и коорди	инаты изм	иерения	радиоакти	зного фон	на в бассей	не Черного		
		Время		Координа					
Номер	Лата			начало измерений конец. измерений					
		начало	конец	широта	долгот	широта	долгота;,		
1	31.07	14.01	15.30	44.24	34.01	—	—		
				(Рейл Симеиза)					
2	31.07	19.00	20.25	44.24,2	34.01				
3	1.08	12,35	15.45	44.16	34.41	44.14,1	35.20,7		
			-	открытое	море, пер	реход Симеиз—			
4	1.08	17.43	19.10	44.12	35.32	_			
5	1.08	19.24	20.49	44.11	35.55	44.10,5	36.14,2		
6	2.08	10.48	13.50	порт Туа	порт Туапсе				
7	2 00	17 50	10.12						
<u>x</u> 9	4 08	9.45	12 45	44 48	36 37	44 58	36 36		
					(Керчен	нский прол	ив)		
10	4.08	15.30	16.55	44.47	36.02				
11	4.08	18.37	20.00	44.53	35.37	44.51,3	35.22,1		
12	5.08	10.23	11.40	44.47	35.52	45.02,4	35.24,5		
12	5.08	12 1/	1/ 55		2.5.20				
14	5.08	15.10	16.13	44.55	35.30	—			
15	8.08	15.22	17.01	Рейд Коктебель					
16	8.08	17.26	20.07						
17	9 08	9.56	13 56	44 21	33 46	<u> </u>			
18	9.08	16.06	21.11	открытое море, южный берег Крыма					
19	10.08	5.55	9.50	46.27	31.27	—			
			<u> </u>	Днепро-Б	-Бугский лиман				
20	10.08	9.50	13.02						
Продол:	жение Т	абл1		-					
		Время		Координата					
Номер	Лата			начало из	мерении	конец изм	ерений		
		начало	конец						
				широта	долгот	широта	долгота		
21	10 08	16 20	20 40	46 35	31 25				
22	11 08	5 1 5	8 20						
23	11 08	12 20	15 05			,—	<u> </u>		
24	11 08	16 05	19 50						
25	14 08	19 10	21 03	45 31	29,54	(устье р Д	(унай)		
26	14 08	21 05	23 30						
27	15 08	18 20	20 53	44 47	31 54				
20	15.05	20.55	22.22			44.10.0	22.22		

 28
 15 05
 20 55
 22 32
 (Рейд Симеиза)
 44 19,8
 33 32

 Центральный момент і-го порядка для дискретной случайной величины определяется формулой
 формулой

$$\mu_{k} = \sum_{i=1}^{n} \left(N_{i} - m_{1} \right)^{k} P_{i}$$
 (2)

коэффициент асимметрии

$$\gamma_1 = \frac{\mu_3}{\mu_2^3} \tag{3}$$

коэффициент эксцесса (крутизна в моде)

$$\gamma_2 = \frac{\mu_4}{\mu_2^4} \tag{4}$$

Здесь γ_1 и γ_2 подобраны таким образом, чтобы было удобнее сравнивать форму экспериментального распределения с нормальным (гауссовым) распределением.

Рис.2 Расположение на карте Пирсона значений коэффициентов асимметрии (γ₁) и эксцесса (γ₂), рассчитанных для выборки измерений радиационного фона Черного моря: квадратыэкспериментальные результаты измерения радиоактивности в полевых условиях; N - нормальное, гауссовское распределение; R - результаты измерений эталона (¹⁴¹Am); A – результаты измерений радиационного фона в Москве; * - точка, рассчитанная по всей совокупности 28 серий измерений радиоактивности фона Черного моря.

Результаты статистической обработки всех выборок показаны на графике, построенном в координатах $\gamma_1 - \gamma_2$ (**Рис.2**) – аналог карты Пирсона. Напомним, что на подобной карте нормальное распределение размещается в точке $\gamma_1=0$, $\gamma_2=0$; равномерное распределение – в точке $\gamma_1=0$, $\gamma_2=1,2$; экспоненциальное распределение – в точке $\gamma_1=2$, $\gamma_2=6$. Распределения с большим числом параметров изображаются на карте в виде линий (например, t - распределение Стьюдента, логнормальное распределение и др.) или в виде небольших областей (β - распределение, распределение Пуассона и др.). Основное преимущество карты Пирсона – ее наглядность, так как она позволяет судить о типе распределения, о близости конкретного экспериментального распределения какому-то

Таблица 2

	Номер эксперимента										
Параметр	1	2	3	4	5	6	7	8	9		
Размер выборки (1)	50	50	100	49	51	100	50	37	107		
Среднее (2) Медиана (3) Мода (4) Геометрическое среднее (5) Дисперсия (6) Стандартное отклонение Стандартная ошибка (8) Минимум (9) Максимум (10)	41,82 41 39 41,4768 30,4771 5,52061 0,78073 33 57	41,78 41 38 r 41,2966 41,8078 6,46589 0,91442 30 56	42,48 42 38 42,0234 39,1208 6,25466 0,62547 30 57	40,6122 41 46 40,2135 32,7007 5,71845 0,81692 30 54	43,2157 43 46 42,5497 57,2525 7,56654 1,05953 28 61	42,76 42 39 42,3163 37,8408 6,15149 0,61515 30 60	40,18 40 34 39,7031 39,9465 6,32033 0,89382 30 56	40,6486 40 41 40,3476 25,9565 5,09475 0,83757 32 53	42,5327 42 36 42,1304 34,3456 5,86051 0,56657 30 54		
Интервал (11) Нижний квартиль (12) Верхний квартиль (13) Межквартильный интер вал (14) Коэффициент асимметрии (15)	24 37 45 8 0,67394	26 37 46 9 0,36313	27 38 46,5 8,5 0,20893	24 36 45 9 0,07361	33 37 49 12 0,05796	30 39 47 8 0,11710	26 35 45 10 0,41138	21 37 43 6 0,58524	24 38 47 9 0,11237		
Стандартная асимметрия Коэффициент эксцесса (17) Стандартная крутизна в моде (18)	1,95416 0,10556 0,15237	1,04827 0,46538 0,67172	0,85295 0,3913 0,79882	0,21036 0,59771 0,85406	0,16898 —0,30458 —0,44400	0,47807 —0,12966 —0,26467	1,18755 0,55755 0,80475	1,45331 0,16429 0,20399	0,47451 —0,84156 —1,77694		

Статистические характеристики распределений флуктуации радиационного фона в регионе Черного моря (времена и координаты измерений даны в табл. 1)

Проведенная в рамках настоящей работы статистическая обработка результатов измерений радиоактивности Черного моря позволяет констатировать, что в изученном регионе отсутствуют зоны с аномально высокой интенсивностью радиационного поля. Средняя скорость счета практически не зависит от координаты и времени измерения. Дисперсии распределений также характеризуются высокой устойчивостью. Статистические критерии показывают формальное подчинение всех экспериментальных выборок распределению Пуассона. Однако более детальный анализ результатов обнаруживает наличие некоторых аномалий, проявляющихся в основном в возникновении «плоско-вершинных» распределений, близко подходящих к равномерному распределению. Рассмотрим некоторые причины их возникновения.

Как известно, случайный процесс распада конкретного радионуклида описывается распределением Пуассона. Однако в условиях полевых измерений адекватность распределения Пуассона экспериментальным данным отнюдь не очевидна. Действительно, судно по ходу движения постоянно попадает в зоны с различной радиоактивностью воздуха (даже на якорной стоянке в открытом море детектор реагирует на водные и воздушные течения, например на ветер, приносящий с берега радиоактивные аэрозоли с продуктами распада радона), а также в области с различной интенсивностью космического излучения (существенно зависящего от времени года, координаты, времени суток и т.п.) и связанных с ним вторичных излучений. Все эти процессы отражаются на показаниях счетчика радиоактивного излучения. Хорошо известно, что в случае наложения нескольких случайных воздействий даже на постоянную величину результаты измерений должны рассеваться согласно нормальному распределению. Поэтому можно ожидать, что реальные распределения флуктуаций радиационного поля в наших условиях будут некоторой смесью гауссовских и пуассоновских распределений. Более того, при движении судна вблизи устьев рек (в рамках данной работы – Днепро-Бугском лимане и в устье реки Дунай) оно переменно проходит зоны то пресной, то морской воды. Смешение нескольких распределений даже одного типа, но с различными значениями среднего и дисперсии, может привести к существенным отклонениям от «базового» распределения (в данном случае – распределения Пуассона), проявляющимся в

возникновении «плоско-вершинных» и даже в появлении многомодальных распределений, а также право- или левосторонней асимметрии. Подобные эффекты и наблюдались в наших экспериментах.

На **Рис.2** показано, что ожидавшегося хаотичного распределения экспериментальных точек вокруг гауссовского распределения ($\gamma_1 = 0, \gamma_2 = 0$) не наблюдается. В целом результаты 28 экспериментов располагались на карте Пирсона следующим образом: островершинные распределения с правосторонней асимметрией – 9; плосковершинные распределения с левосторонней асимметрией – 15; плосковершинные распределения с левосторонней асимметрией – 0. В целом плосковершинные распределения с любой асимметрией преобладают над островершинными.

Полученные результаты свидетельствуют о наличии активных процессов смешения приповерхностных вод и воздушных масс в исследованном регионе Черного моря, проявляющихся не столько в изменениях средней радиоактивности, сколько в изменениях типа статистического распределения. Можно надеяться, что в дальнейшем метод параметрических моментов найдет применение для решения обратной задачи – определения условий смешения морских вод путем анализа результатов измерений флуктуаций радиационного поля.

Литература

- 1. Бекман И.Н., Овчаренко В.П., Синьков С.И.//Проблемы научных исследований в области изучения и освоения мирового океана. IV Всесою. Совещ. Сборник трудов, г.Владивосток, 1983. С. 148
- 2. Синьков С.И., Сапожников Ю.А., Бекман И.Н.//Проблемы научных исследований в области изучения и освоения мирового океана. IV Всесою. Совещ. Сборник трудов, г.Владивосток, 1983. С. 145
- 3. Тимашов С.Ф.//ЖФХ. 1993. 67. С.798
- 4. Ахпазарова С.Л., Кафаров В.В.//Методы оптимизации эксперимента в химической технологии. М., 1985. С.17