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Abstract 

The theoretical background for the use of radon diffusion as a probe of microstructure changes in solids is given. The 
high sensitivity of the emanation thermal analysis (ETA) in the study of solid state processes especially interactions 
taking place on surfaces and in the near surface layers is described. The increasing sensitivity of the method towards 
bulk processes with rising temperature is theoretically shown. The background considerations to be used in the 
mathematical modeling of temperature dependences of the radon release from solids on heating (i.e. simulated ETA 
curves) are presented. Various models for radon diffusion and various functions describing the annealing of structure 
irregularities, which served as diffusion paths for radon, were used in the modeling. It was shown, that ETA is able to 
characterize microstructure changes in the surface layers of the thickness from several nanometers to several 
micrometers. 
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Introduction 

Emanation thermal analysis (ETA) has been widely used for the characterization of the evolution of surface 
area and opened porosity of the solids during heating [1-3]. The information obtained by ETA on the 
microstructure development of various solids was overviewed in a monograph by Balek and Tolgyessy [4]. 
The measured release of the inert gases, previously incorporated into the solids, made it possible to 
characterize the formation and annealing of structure defects. Various stages the inert gas mobility in the 
samples were described [6-18]. 

Different techniques were applied for the incorporation of the inert gas atoms (e.g. neon, argon, 
krypton, xenon and radon, resp.) into solid samples. Ion beam energy, energy of nuclear reactions, etc. 
were used for this purpose [5]. 

In this study we describe the theoretical approach for the evaluation of ETA results of the solids based 
on the release of radon atoms, which were incorporated into the near surface layers of the solids by the 
recoil energy of the spontaneous α-decay of radon parents radionuclides. 

Background considerations 

Emanation thermal analysis [1] consists in the measurement of radon release rate from the samples 
previously labeled. Atoms of radon 220Rn are formed by the spontaneous α-decay of 228Th and 224Ra 
according to the following scheme: 
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The thorium nuclide 228Th used for labeling samples has a suitable half-life (1.9 years) to serve as a 



quasi-permanent source of radon 220Rn (half-life 55 s). The half-life of 220Rn ensures that the steady state 
between 224Ra and 228Th and 224Ra is established within several minutes, which makes it possible to 
investigate even rapid changes in the solids and on their surface. Radon formed by the spontaneous α-decay 
of 228Th and 224Ra was incorporated into samples to a maximum depth of 100 nm from the surface, due to 
the energy (85 keV atom-1) of recoiled atoms [5]. 

The method of sample labeling by 222Rn using the recoil energy of radium 226Ra α-decay was proposed 
by Lindner and Matzke [19]. Due to the half-life of 222Rn (3.8 days) the radionuclide of 226Rn cannot be 
used as the quasi-permanent source of radon atoms, in contrary to the radionuclides 228Th→224Ra→220Rn. 

In the samples labeled by 228Th adsorption, the high amount of 220Rn is situated in the near surface 
layers. This ensures the high sensitivity of ETA to the changes of surface roughness and microstructure in 
the near surface layers. As it follows from the calculated concentration profiles (Fig. 1) the concentration of 
220Rn has a descendent character. The Monte Carlo method was used in the calculation of the distribution 
profiles of 224Ra and 220Rn for a model sample. It was supposed that the parent 228Th radionuclide is situated 
on the surface of the sample up to the depth of several nanometers, corresponding to its roughness (Fig. 1, 
curve 1). The concentration profiles of 224Ra and 220Rn are given as curves 2 and 3, resp. in Fig. 1. During 
the calculation by Monte Carlo method and using TRIM code [20] we considered the solid sample of the 
density ρ=2.643 g cm-3 (corresponding to yttria ceramics, Y2O3). The calculated values of the recoil ranges 
are: for 224Ra: 47 nm (straggling 15 nm), for 220Rn: 48 nm (straggling 15 nm). It was supposed that the 
recoil energy of both 224Ra and 220Rn is 85 keV atom-1, resp. 

Moreover, it was supposed that 228Th and 224Ra do not migrate in the solid at the temperatures used for 
ETA measurements. The value of the total emanating rate ET0TAL of a solid is composed of two terms, 
namely the emanating rate, ER, due to recoil, and the emanating rate, ED, due to diffusion. The emanating 
rate ER depends on the shape and size of the sample, the recoil range of 224Ra and 220Rn in the sample and 
on the initial distribution of 228Th. 

 
Fig. 1 Calculated distribution profiles of the radionuclides 228Th (1) used for labeling of the sample by adsorption 

on the surface and radionuclides of 224Ra (2) and 220Rn (3) produced by α-decay and introduced by the 
recoil energy into the dense solid plate 

The emanating rate, ED depends on the initial distribution function of 220Rn, surface area, the value of 
radon diffusion coefficient and its temperature dependence, and on the heating rate. 

The total emanating rate ET0TAL, representing the probability of the release rate of radon atoms from a 
solid, can be expressed in the simplified way as 

ET0TAL(T)=ER + ED(T) (2) 
where ER is the emanating rate due to recoil (which is, for simplicity, taken as a constant value in this study), 
and ED is the emanating rate due to diffusion. Two cases are considered in this paper: (A) no solid state 



transitions take place during heating, (B) solid state transitions take place during heating. 
(A) At the absence of the solid state transitions we suppose that the flux of radon from the sample 

(composed of grains smaller than 1 micron) is dependent on the sample size. 
For powders of sub-micron grain size the radon flux is depending moreover on the sample shape. The 

following expression was proposed for the temperature dependence of ΕD in the case of spherical grains 
[21]: 
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r0 is grain radius, λ is the decay constant of radon 220Rn, D is radon diffusion coefficient in the solid, 
LD=(D/λ)1/2 is called the diffusion length, coth (y) representing the cotangent hyperbolic function of y. 

The following temperature dependence was supposed for D(T): 
D(T)=D0exp(-QD/RT) (4) 

where QD and D0 - are the activation energy and pre-exponential factor of radon diffusion, resp., R - molar 
gas constant, T- temperature, K. 

For the low values of ΕD or for the large grain sizes the following simplified expressions can be used: 
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The Eq. (4c) reflects the radon diffusion in an infinite media. It is applicable to samples of any shape (if 
the grain size is large enough, and coefficient of radon diffusion low enough). The temperature dependence 
of the radon flux from a homogeneous medium is usually described by a simple exponential curve. 

If no chemical and physical changes take place in the homogeneous solid, under quasi-stationary 
conditions, the total emanating rate ETOTAL depends on the temperature: 
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where x=R/r0, R is the path of the recoiled atoms of radon. Similar expressions were proposed [22, 23] for 
the grains of other shapes, such as plate or cylinder. 

(B) In cases when the grains size, the concentration of defects and the radon diffusion coefficient in the 
solid samples change, additional effects on the temperature dependence on the radon release rate appear. 
Consequently, the changes in defects concentration can be revealed by the measurement of the radon 
release directly on heating in the required gas. Different mechanisms of radon diffusion in the disordered 
heterogeneous solid were considered in the proposed model, namely: 

- diffusion in two (or more) independent paths (parallel diffusion); 
- diffusion permitting the reversible exchange of the radon atoms between paths (dissociative 

diffusion); 



- diffusion in a solid where the creation of new diffusion paths and/or the annealing of the existing 
paths is supposed (dissociative diffusion in dynamic regimes); 

- diffusion in a solid where solid state transitions take place during heating (reactive diffusion); 
- the consecutive inert gas diffusion. 

Models of radon diffusion in solids 

Model of parallel diffusion 

According to this model both the radon release due to the diffusion in pores (£Di) and that due to the 
diffusion in bulk of the sample (ΕΌ ) contribute to the emanating rate ED value. Considering the model for 
parallel diffusion the emanating rate ED can be written as follows: 

ED(T)=φ1ED1(T)+φ2ED2(T) (6) 
where 

φ1+φ2=1; 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
−=

2
2

21
1

1

1coth3;1coth3
21 y

y
y

E
y

y
y

E DD ; 

2/1

2
02

2/1

1
01 )(

;
)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ λ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ λ
=

TD
ry

TD
ry ; 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛−=

T
QDD

T
QDD

RR
2

0,22
1

0,11 exp;exp  

where φ, is concentration of diffusion path of i-types, D0,i is the pre-exponential factor and Qi is activation 
energy of radon diffusion along the paths of i-type. 

Model of dissociative diffusion 

In the mathematical model of inert gas diffusion it is assumed that at least two channels of radon diffusion 
control the diffusion. The radon concentration can be described as distributed between two types of traps in 
the lattice, differing in the thermal stability. The respective traps of the inert gas are called in this paper as 
‘high temperature traps’ and ‘low temperature traps’. It has been supposed that clusters can be formed 
between the traps and inert gas atoms. ‘High temperature clusters of radon’ are denoted h.t. [Rn] and ‘low 
temperature clusters of radon’ are denoted l.t.[Rn]. The h.t.[Rn] cluster is more temperature stable than the 
l.t.[Rn] cluster, therefore the former predominated at higher temperatures, whereas the latter cluster 
predominated at low temperature interval of the sample heating. 

When the temperature increases, the mobility of the low temperature clusters increases and the 
emanating rate, E, of the solid increases correspondingly. The dissociation of these clusters also increases, 
as the result of trapping of radon in the low-mobile stage (i.e. as the h.t.[Rn] high temperature clusters 
increases). 

The reversible process of the formation of high mobile radon clusters (i.e. the l.t.[Rn] clusters) can be 
described by Eq. (7): 
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⎯⎯←
⎯→⎯

2

1

k

k

 h.t.[0]+l.t.[Rn] (7) 

where h.t.[Rn] is radon situated in a high temperature, (low-mobile) cluster, l.t.[0] is an unoccupied low 
temperature defect; h.t.[0] is an unoccupied high temperature defect; l.t.[Rn] is radon in a low-mobile 



cluster; k1 is the rate constant for l.t.[Rn] cluster formation; k2 is rate constant for l.t.[Rn] cluster 
decomposition. 

For the conditions of a thermal equilibrium we introduced the equilibrium constant Κ of the reversible 
redistribution of radon between low temperature and high temperature defects, respectively. We assumed 
that the defects are in the thermal equilibrium, i.e. that N1+N2=N, where N1 is the concentration of high 
temperature defects; N2 is the concentration of low temperature defects; and N is the total defect 
concentration. The constant Κ characterizing the formation of the l.t.[Rn] complex is expressed by Eq. (8): 
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where C1 and C2 are the radon concentrations in high temperature and low temperature defects, 
respectively; and N1(0) andiN2(0) are the concentrations of the respective unoccupied defects. 

It is to point out that the tracer concentration of radon is used for the labeling of solids to be 
investigated by means of the emanation thermal analysis, so that C1<<N1 and C2<<N2. Then 
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where φ1=Ν1/Ν and φ2=N2/N are the relative concentration of high and low temperature defects, 
respectively (φ1+φ2=1). 

The inert gas migration in two kinds of diffusion channels, where the inert gas atoms are exchanged, 
can be formally described by the kinetics of the first order chemical reaction. 

The system of differential equations that describes such a process is given in Eq. (10). 
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where D1 and D2 is the radon diffusion coefficient along the high temperature and the low temperature 
defects, respectively. 

In the presence of a local equilibrium (k1ϕ1C1= k2ϕ2C2) the diffusion process is described by the 
effective diffusion coefficient Deff given in Eq. (11): 

2

221
eff )(1

)()()(
ϕ+
ϕ+

=
TK

TDTKTDD  (11) 

The terms of Eq. (8) obey the following temperature dependencies 
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where Q1 and Q2 are the activation energies of radon diffusion via the high and low temperature defects 
respectively; QK is the enthalpy of l.t.[Rn] complex formation; D10, D20, and K0 are the respective 
pre-exponential factors; and R is the molar gas constant. 

If the migration of radon from one diffusion channel into another can be described by the equilibrium 
constant, K(T) (Eq. (12c)) the mechanism of the dissociative diffusion should be used for the modeling and 
the evaluation of the ETA curves. In this case the emanating rate ΕD depends on temperature as follows: 
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In the modeling of more complex cases of the thermal behavior of solids, we have considered not only 
the values of the radon diffusion permeability in individual diffusion channels, but also the relative number, 
ϕ2(T), of the diffusion channels. Then, the following expression was used for the temperature dependence 
of ED: 
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A problem raised in the determination of the temperature dependence of the concentration of easily 
mobile, low temperature defects, ϕ2(T). To solve the problem we assumed that: 

- φ2 is independent on temperature in the case, if radon diffusion takes place via impurity defects, or if 
l.t.[Rn] clusters dissociation is faster than that of the most mobile low temperature defects; 

- ϕ2(T) is a function that decreases during annealing of defects (e.g., radiation or mechanically induced 
defects); 

- ϕ2(T) is a stepwise function that decreases over a narrow temperature intervals in which a phase 
transition takes place in the solid. 

For these assumptions we can write: 
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where φ2
0 is the initial concentration of low mobile defects, A is constant that determines the concentration 

range of the transition, 0<A<l; Tm is the temperature of maximum rate of defects concentration change; σ is 
a constant that determines the temperature range of transition ∆T (where ∆T =3σ), erf(z) is integral Gauss 
function 

( )
2

;2 2

σ
−

=ξ
π

= ξ− mTTzdezerf  

and ξ is a variable of integration. 

Model of reactive diffusion 

If solid-state transitions take place in the investigated sample, the temperature dependence of the total 
emanating rate, E, can be schematically written as: 

E(T)=ER+ED(T)Ψ(T) (16) 
i.e. the second term is a product of two functions: ED characterizing the radon permeability of diffusion 
channels, and the Ψ(Τ) characterizing structural changes during solid state reactions. 



In the case that the sample, undergoing solid state transitions is heated to elevated temperature, the 
temperature dependence of the radon diffusion coefficient D(T) is a growing function, whereas the Ψ(T) is 
the descending function. 

The character of the ETA curve depends on a number of diffusion paths serving for the gas release, 
Ψ(T) function characterizing the microstructure changes in the solid and D(T) function characterizing 
permeability of transporting paths. The shape of the ETA curve is therefore determined as the combination 
of various functions Ψ(T) and D(T). In this study we used several types of functions for D(T), for example: 
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In the case that the number of diffusion paths and/or surface area decreases on heating, the structural 
function Ψ(T) has a decreasing character, whereas if the number of diffusion paths increases during the 
heating of the sample the structural function Ψ(T) has an increasing character. 

In the modeling, following expressions were used for the structural function Ψ(T). The descending 
character is described by the functions given in Eqs (18a)-(18e), whereas the increasing character of the 
defects concentration can be expressed by functions given by Eqs (18f) and (18g), resp. 

Ψ(T)=exp(-qT) (18a) 
Ψ(T)=T-m (18b) 
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Ψ(T)=exp(qT) (18f) 
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where q, m, Tm and Τ are parameters. 
The following general expression was proposed for the mathematical modeling of the overall view 

ETA curves: 
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The functions D(T) and Ψ(T) are determined by the mechanisms of chemical or physical processes. 

Mechanism of consecutive diffusion 

The mechanism of consecutive diffusion assumes, that in a temperatures range Τ0≤Τ≤Τ1 the radon diffusion 
takes place in the initial material (characterized by parameters Dl0 and Qi), and in the temperature range 
Τ1≤Τ≤Τ2 radon diffusion takes place in the newly formed structure (characterized by the parameters D20 and 
Q2). 

In the more complex models of the consecutive diffusion we considered the possibility of the smooth 
transition from one structure to another via a series of intermediate states. Monotonous functions of the 
transition from D10 to D20 and from Q1 to Q2 were used in the modeling. 

Simulation of temperature dependences of radon diffusion 

The following considerations should be taken in the modeling of the temperature dependences of radon 
diffusion (simulated ETA curves) which describe the thermal behavior of the solids. 

The effects observed on the ETA curves can be ascribed to the following processes: 
- thermal desorption of radon from the surface and near surface pores and cracks connected with the 

surface 
- mobility of radon along grain boundaries and other structure defects serving as diffusion paths for 

radon 
- changes in the concentration of the radon diffusion paths, which may increase in the early stage of the 

solid state transition due to the formation of the new paths, and decrease in the latter stage due to the 
structure ordering of the newly formed phase. 

The observed peak-like effects on the ETA curves therefore reflect the initial increase of radon 
diffusion paths or surface area, followed by their decrease due to the annealing of the diffusion paths. 

The expressions (18a-g) can be used in the modeling of both the decrease (Eqs (18a-e)) of the surface 
area and the concentration of the structure defects and their respective increase (Eqs (18f, g)). 

The changes in the surface area or porous structure of solids are reflected by the emanating rate ER and 
ΕD in a different way. 

Sintering of grains or collapse of porosity is reflected by the decrease of the radon release rate. The 
decrease of the surface area can be described by parabolic, exponential or other descending (symmetrical or 
asymmetrical) functions, respectively. For the multicomponent solids, the values of the radon diffusion 
parameters may differ in each component and depend on the surface area available for radon migration 
from the sample. 

During the thermal decomposition of the sample intermediate metastable structures are formed, which 
may considerably differ in the number of radon diffusion paths, surface area and open porosity. The 



metastable phases may possess different surface relief and roughness. The newly formed interfaces may 
exist only temporarily and disappear on further heating or cooling of the samples. The existence of such 
interfaces (even not observable by XRD and surface area measurement by nitrogen adsorption) can be 
revealed by means of ETA based on the measurement of radon release. The changes in the radon diffusion 
mechanisms may take place during thermal treatment of the sample. 

The mathematical model, designed in this study, takes into account that the thickness of the analyzed 
layer by means of ETA increased during heating of the sample, due to the increasing value of the radon 
diffusion length LD=(D/λ)1/2 at elevated temperatures. The values of the diffusion length LD were calculated 
supposing the temperature dependence of D(T) given in Eq. (17a), where D0=6 m2 s-1 QD=209.5 kJ mol-1. 
As it follows from Table 1, the radon diffusion length calculated for a model ionic solid of the density of 
2.643 g cm-3 considerably increased with heating. By this way the thickness of the layer which became 
labeled by radon increased from 1.6 nm at 800°C up to 6900 nm at 1400°C. 

Table 1 Diffusion length for radon in a model solid characterized by the density ρ=2.643 g cm-3, D0=6 
m2 s-1, QD=209.5 kJ mol-1 

 
Temperature/°C Diffusion length LD/nm

20 1.6⋅10-29 
800 1.6
900 11 

1000 62 
1100 261 
1200 902 
1400 6900

In practice it means that ETA is able to reflect the microstructure changes, not only in the near surface 
layers, labeled by recoil, but also in the bulk of the solid sample. In the low temperature range where the 
radon diffusion in the solid matrix is negligible, the mechanism of the thermo-stimulated desorption of 
radon atoms from the structure defects and traps can be considered in the evaluation of ETA results. 

Examples of the mathematical simulation of the temperature dependences of the radon release rate will 
be presented in the next study [24], considering different solid state processes like thermal decomposition 
of hydroxides, defect concentration changes due to nonstochiometry etc. 

Conclusions 

It was shown in this paper that radon diffusion can serve as a probe of microstructure changes in solids. The 
thickness of the layer in which ETA is able to characterize microstructure changes increases from several 
nanometers to several micrometers with the sample heated from 800 up to 1400°C, respectively. The 
mathematical models described in this paper can be used for the modeling and evaluation of the ETA 
experimental results . The theoretical basis for ETA was upgraded giving mathematical models for the 
computer treatment of ETA data, and finally, making the application of ETA easier. 
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