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ABSTRACT 

The application of functional scales to the evaluation of diffusion parameters of inert gas diffusion in 
solids is shown. The linearized diffusion scales which may be applied to the evaluation of diffusion parameters 
and the determination of mathematical models of thermally stimulated inert gas diffusion are demonstrated. 

INTRODUCTION 

In the previous papers of this series [1-4] the problems concerning the comparison of theoretical 
curves and experimental results of emanation thermal analysis have been discussed. The main 
difficulties are connected with the lack of simple and reliable methods for the treatment and 
interpretation of diffusion experiment data. The application of rapid computers is necessary for the 
treatment of these data because of the complexity of the mathematics of diffusion phenomena. 

The task of the treatment of experimental diffusion data can be substantially simplified when 
using functional scales which give the possibility of linearizing non-linear dependences between the 
parameters investigated. There exists a possibility to construct special diffusion scale sheets by means 
of which the linearization of the non-linear dependences can be made directly and simply. For every 
technique used in emanation thermal analysis, e.g., the permeability and adsorption techniques, 
thermally stimulated diffusion of inert gas label [5], and other special diffusion functional scales must 
be designed [6,7]. 

The diffusion parameters and errors of their determination can be evaluated by the least 
squares method using a pocket calculator. The aim of this paper is to show how the functional scales 
for evaluating diffusion data of various techniques of emanation thermal analysis can be constructed. 
The diffusion scale sheets for the treatment of thermally stimulated diffusion data are presented, 
taking into account various shapes of solid samples and various inert gas diffusion mechanisms. 

PHENOMENOLOGICAL THEORY OF THE METHOD OF RADIOACTIVE INERT GAS PROBE 

The method, which is based on the determination of radioactive inert gas release from a solid 
heated at a constant rate is generally called the method of radioactive inert gas probe. This method is 
considered to be one variety of emanation thermal analysis. 



The determination of the stage of inert gas release has to be made before the treatment of the 
experimental data. The kinetic or diffusion stage of inert gas release are usually considered. The 
diffusion stage of the release is usually observed at temperatures when the self diffusion in the crystal 
lattice of solids takes place and when the inert gas is distributed in the whole volume of the sample. 
In this case the inert gas release can be described by the solution of Fick's laws taking into account the 
respective initial and limit conditions and the geometrical form of the samples investigated. The initial 
differential equation taking into account various geometrical shapes of the sample can be written in the 
form of eqn. (1) 
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where C(r, t) is the concentration of inert radioactive gas, t is time, D is the inert gas diffusion 
coefficient, r the radial coordinate, v = 0 for a plate, cylinder or prism with impermeable sides, v =1 
for a cylinder or prism with impermeable bases (i.e., infinite cylinder); v = 2 for a sphere. Equation 1 
has to be solved at the limit conditions 
C(L, t) = 0 (2a) 

0/),0( =∂∂ xtC  (2b) 
C(x, 0) = f(x) (2c) 
where L is the characteristic size of the elementary volume at the point where sample diffusion takes 
place, e.g., the half width of the plate or radius of the sphere or cylinder. 

For homogeneous distribution of the diffusion gas in the volume of the sample C(x, 0) = C0 the 
solution of eqn. (1) under the limit conditions (2) results in the time dependence of the density J of 
the flux of inert gas release, in eqn. (3) 
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where µm 0; [(2m + 1)π/2, v = 0; qm, v = 1; πm, v = 2] and qm are nuclei of the Bessel functions. 
The existence of the temperature dependence of the diffusion coefficient causes more 

complicated mathematical expressions for the equation of the inert gas release flux J. 
The temperature dependence of the diffusion coefficient is usually represented as 

D = D0exp(-Ed/RT) (4) 
where D0 and Ed are the pre-exponential factor and activation energy of inert gas diffusion, 
respectively, R is the molar gas constant, and T is temperature (in K). 

In conditions of constant heating rate the temperature increases according to the relationship 
T=T0 + κt . (5) 
where T0 is the temperature of the onset of sample heating, к is heating rate (in К s-1), t is heating 
time (in s). Then the time dependence of the diffusion coefficient can be described by eqn. (6) 
D(t) = D0exp[-Ed/R(T0 + Kt)] (6) 
The time dependence of the flux J of the inert gas release on constant heating rate of the sample 
can be obtained by replacement in eqn. (3) of D by D(t) (see eqn. 6) and Dt by the integral time τi 
which is given by 
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under conditions of a linear temperature increase we can write 
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Finally, in the case of a uniformly labelled sphere with radius r0, the flux J of the inert gas from 
the sample is expressed by eqn. (9) 
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where S is surface area of the sample, the constant heating rate condition being supposed. 

 
Fig. 1. Computed temperature dependences of the thermostimulated inert gas release during constant rate 
heating of samples of various shape, supposing various diffusion stages: curve (1) spherical sample, diffusion 
stage of gas release; curve (2) plate, diffusion stage of gas release; curve (3) kinetic stage of gas release. The 
values of Ed = 20000, ln(K0R/Ed) = 23 are assumed. 
 

As it follows from eqn. (9) with conditions of linearly increasing temperature, the time 
dependence of the inert gas flux J can be represented by an asymmetric peak-like curve (see Fig. 1). 

The peak maximum temperature rises with the increase of the diffusion activation energy, radius 
of the grain and the sample heating rate. The decrease of the pre-exponential factor should also lead 
to an increase in the temperature of the peak maximum. 

The kinetic stage of the inert gas release is usually observed after long diffusion times, i.e. when 
the majority (>80%) of inert gas has been released, more precisely it is after time, tx, equal to 
L2/4π2D. 

However, in many cases the kinetic stage of inert gas release can be considered as the beginning 
of the diffusion experiment (ETA measurements). This is, e.g., the case of inert gas desorption from 
solid surfaces, the inert gas diffusion in highly defected solid media (e.g. meteorites and natural 
minerals) the inert gas diffusion from the surface layers of solids labelled by ionic bombardment or 
nuclear reactions, the case of solids with large surface area (e.g. zeolites) and when intense solid state 



processes take place during the heating of the sample (e.g. annealing of defects, phase transitions, solid 
state reactions, etc.). 

In the kinetic stage, the inert gas release is almost independent on the initial concentration 
profile of the inert gas in the solid sample, the geometrical shape and size of the sample investigated; 
usually it takes place at 
temperatures considerably lower than the volume diffusion of inert gases in the respective solids. 

This behaviour can be explained by the "single-jump diffusion" model considering that for the release of 
inert gas atoms a small number (less than 100) of gas-atom jumps in the lattice is sufficient. Considering the 
kinetic stage of inert gas release, the classical diffusion equation [in eqn. (1)] can be substituted by the equation 
of the first order chemical reaction in eqn. (10). 
d C / d t = - K d C  (10) 
where Kd = π2D/d2, d being the length of diffusion jump, С is the number of the inert gas atoms which are 
present in the sample at time t. 

The inert gas flux J from the sample heated at a constant rate is given by eqn. (11). 
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In Fig. 1 the temperature dependences of the thermostimulated inert gas release during constant heating of 
spherical samples or plates are demonstrated. In calculations, the volume diffusion mechanism (curves 1 and 
2) and the single jump diffusion mechanism (curve 3, Fig. 1) were considered. The main influencing factors are 
the geometrical shape of the grains and the diffusion mechanism of the inert gas. Supposing the same 
parameters of the inert gas diffusion, the size of the samples and the volume diffusion mechanism of inert 
gas, curve 1 in Fig. 1 results for spherical samples, with the maximum at a lower temperature than in the case of 
plates or samples of other shapes (Fig. 1, curve 2). When single-jump diffusion is considered, the inert gas 
release curves are more symmetric and the peak is sharper (Fig. 1, curve 3) than in the curves of the volume 
diffusion mechanism, and are independent of the shape of the sample. 

CALCULATION AND PLOTTING OF FUNCTIONAL SCALES 

The example of the functional scale construction for the case of kinetic stage inert gas release will be 
given later. Equation (11) can be written in the following form 
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TABLE1 

Functional scale for linearization of the curves of thermostimulated inert gas release in kinetic stage 
 
F(U) U U F(U) U U
 (Increasing (Decreasing)  (Increasing (Decreasing)
0.02 4.8065 -1.7861 0.52 1.3513 -0.9029
0.04 4.1082 -1.6693 0.54 1.3024 -0.8807 
0.06 3.6972 -1.5915 0.56 1.2545 -0.8586 
0.08 3.4036 -1.5307 0.58 1.2074 -0.8363 
0.10 3.1744 -1.4801 0.60 1.1612 -0.8139 
0.12 2.9858 -1.4357 0.62 1.1155 -0.7912 
0.14 2.8253 -1.3959 0.64 1.0704 -0.7683 
0.16 2.6851 -1.3597 0.66 1.0257 -0.7451 
0.18 2.5605 -1.3258 0.68 0.9814 -0.7216 
0.20 2.4481 -1.2943 0.70 0.9373 -0.6975 
0.22 2.3456 -1.2643 0.72 0.8932 -0.6730 
0.24 2.2513 -1.2357 0.74 0.8491 -0.6478 
0.26 2.1637 -1.2083 0.76 0.8048 -0.6219 
0.28 2.0818 -1.1819 0.78 0.7602 -0.5951 
0.30 2.0048 -1.1564 0.80 0.7151 -0.5673 
0.32 1.9321 -1.1315 0.82 0.6692 -0.5383 
0.34 1.8631 -1.1072 0.84 0.6222 -0.5079 
0.36 1.7973 -1.0834 0.86 0.5740 -0.4756 
0.38 1.7344 -1.0600 0.88 0.5238 -0.4410 
0.40 1.6740 -1.0369 0.90 0.4711 -0.4037 
0.42 1.6159 -1.0142 0.92 0.4148 -0.3621 
0.44 1.5598 -0.9917 0.94 0.3533 -0.3150 
0.46 1.5054 -0.9693 0.96 0.2829 -0.2589 
0.48 1.4527 ; -0.9471 0.98 0.1952 -0.1851 
0.50 1.4014 -0.9250 1.00 0.0000 0.0000 

where Tm is the temperature of the peak maximum. 

In К0/к - ln Ed/R + 2 ln Tm - Ed/RTm = 0 (13) 

In order to prepare the diffusion scale sheets the values of F(U) are calculated, and by subsequent 
dividing the F(U) function into several intervals, the U-values are found which correspond to the 
F(U) values. The calculated values for the case of the kinetic stage of gas release are given in Table 1; 
for the examples of volume diffusion from plate and spherical samples, see Tables 2 and 3, 
respectively. 

The functional scale is written directly on the ordinate axis: on the right of the axis the values of U 
in the normal scale are given, on the left the corresponding values of F(U) in the functional scale are 
presented; the values of 1/T (K-1) are given on the abscissae. 

 



TABLE 2 

Functional scale for linearization of the curves of thermostimulated inert gas release from plate 

F(U) U U F(U) U U
 (Increasing) (Decreasing)  (Increasing) (Decreasing)
0.02 8.4556 -1.7902 0.52 1.7647 -0.9066
0.04 7.3566 -1.6733 0.54 1.6808 -0.8845 
0.06 6.5105 -1.5955 0.56 1.5999 -0.8623 
0.08 5.8842 -1.5347 0.58 1.5218 -0.8400 
0.10 5.3969 -1.4841 0.60 1.4463 -0.8175 
0.12 4.9982 -1.4397 0.62 1.3733 -0.7949 
0.14 4.6605 -1.3999 0.64 1.3025 -0.7720 
0.16 4.3676 -1.3637 0.66 1.2338 -0.7487 
0.18 4.1089 -1.3298 0.68 1.1671 -0.7251 
0.20 3.8773 -1.2982 0.70 1.1022 -0.7011 
0.22 3.6676 -1.2683 0.72 1.0390 -0.6765 
0.24 3.4759 -1.2397 0.74 0.9773 -0.6513 
0.26 3.2995 -1.2122 0.76 0.9168 -0.6253 
0.28 3.1359 -1.1859 0.78 0.8574 -0.5985 
0.30 2.9836 -1.1603 0.80 0.7987 - 0.5706 
0.32 2.8409 -1.1354 0.82 0.7406 -0.5416 
0.34 2.7069 -1.1110 0.84 0.6826 -0.5111 
0.36 2.5805 -1.0872 0.86 0.6243 -0.4787 
0.38 2.4608 -1.0638 0.88 0.5652 -0.4440 
0.40 2.3471 -1.0408 0.90 0.5044 -0.4066 
0.42 2.2389 -1.0180 0.92 0.4409 -0.3648 
0.44 2.1357 -0.9955 0.94 0.3730 -0.3175 
0.46 2.0371 -0.9731 0.96 0.2968 -0.2610 
0.48 1.9426 -0.9509 0.98 0.2039 -0.1865 
0.50 1.8519 -0.9287 1.00 0.0000 0.0000 

The experimental results of thermostimulated inert gas release represent, in the normal scale, the 
peak-shaped curves, which are usually normalized with respect to the height of the maximum; in the 
linearized functional scale these results represent the dependence of Y(T)/Y(Tm) = F(U) vs. 1/T. 
Every point in the curve is determined by two coordinates: 1/T and U; the constructed dependence 
between U and l/T саn be described by the linear relationship in eqn. (14) 
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where A is the part of the ordinate axis which can be used for the calculation of the 
pre-exponential factor of diffusion. 
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TABLE 3 

Functional scale for linearization of the curves of thermostimulated inert gas release from spherical 
sample 

F(U) U U F(U) U U
 (Increasing) (Decreasing)  (Increasing) (Decreasing) 
0.02 8.8621 -2.1008 0.52 2.5030 -1.1761
0.04 7.9960 -1.9818 0.54 2.4039 -1.1517 
0.06 7.3701 -1.9019 0.56 2.3072 -1.1271 
0.08 6.8234 -1.8396 0.58 2.2127 -1.1022 
0.10 6.3456 -1.7873 0.60 2.1200 -1.0771 
0.12 5.9423 -1.7415 0.62 2.0291 -1.0515 
0.14 5.5985 -1.7003 0.64 1.9397 -1.0255 
0.16 5.2989 -1.6626 0.66 1.8515 -0.9990 
0.18 5.0331 -1.6275 0.68 1.7644 -0.9719 
0.20 4.7938 -1.5945 0.70 1.6781 -0.9440 
0.22 4.5761 -1.5630 0.72 1.5925 -0.9153 
0.24 4.3760 -1.5332 0.74 1.5073 -0.8857 
0.26 4.1907 -1.5044 0.76 1.4223 -0.8548 
0.28 4.0179 -1.4765 0.78 1.3371 -0.8226 
0.30 3.8560 -1.4494 0.80 1.2516 -0.7889 
0.32 3.7033 -1.4230 0.82 1.1653 -0.7533 
0.34 3.5588 -1.3972 0.84 1.0777 -0.7154 
0.36 3.4215 -1.3718 0.86 0.9883 -0.6747 
0.38 3.2906 -1.3467 0.88 0.8964 -0.6306 
0.40 3.1653 -1.3220 0.90 0.8008 -0.5815 
0.42 3.0450 -1.2975 0.92 0.6999 -0.5270 
0.44 2.9292 -1.2731 0.94 0.5910 -0.4632 
0.46 2.8176 -1.2489 0.96 0.4688 -0.3854 
0.48 2.7095 -1.2247 0.98 0.3195 -0.2799 
0.50 2.6048 -1.2004 1.00 0.0000 0.0000 

where a is the coefficient of the geometry of the sample (a = 1 for single jump diffusion, a = 1.0029 
for a plate-shaped sample, a = 1.01907 for a sphere). 

The activation energy of diffusion can be expressed as follows: 

Ed = R tgα (16) 

The experimental curves of the thermally stimulated diffusion in the normal scale and in the 
functional scale are represented in Figs. 2 and 3, respectively. In this way the initial peak-shape 
temperature dependence of the inert gas release is transformed to a linear dependence; the maximum 
temperature of the peak Tm corresponds to U = 0, the low temperature-increasing part of the peak (T< 
Tm) is reflected by values U>0, the high temperature-decreasing part of the peak (T> Tm) is reflected 
by values U<0. 



 
Fig. 2. The linearized temperature dependences of the thermostimulated inert gas release during constant 
rate heating of the spherical and plate samples, considering different stages of inert gas release. The notation 
of the curves is the same as in Fig. 1. 

There are several advantages of this simple method of treatment of diffusion experimental data. 
The linearized dependences of inert gas release enabled us to calculate easily the diffusion parameters 
using all points of the ETA curve. The suitability of the diffusion model used for the construction of 
the inert gas release curve can be estimated according to the correlation coefficient value. The most 
suitable diffusion model is the one that the corresponding correlation coefficient is close to unity. 

 



 
Fig. 3. The influence of the inertia of the apparatus on the temperature dependences of thermostimulated inert 
gas release: (various values of parameter Z being considered): curve (1) Z→∞ (idealized case for the 
measuring chamber with the volume V→0); curve (2) Z= 0.5; curve (3) Z= 0.25; curve (4) Z= 0.167. 

APPLICATION OF THE FUNCTIONAL SCALES IN ANALYSIS OF ETA CURVES 
INFLUENCED BY VARIOUS FACTORS 

The real ETA curves demonstrating the temperature dependence of the inert gas release by thermal 
desorption or diffusion are influenced by the shape of solid grains and by the inertia of the apparatus. 
Moreover, the curves of the thermostimulated inert gas release are dependent on the diffusion 
mechanism, i.e., for interaction between inert gas atoms with defects of the lattice, multichannel 
diffusion and solid state reactions. Consequently, in practice the ETA curves do not correspond 
perfectly to the idealised diffusion cases discussed above. Sometimes the real curves of inert gas release 
cannot be fully linearized by using the functional scales. Nevertheless, the application of functional 
scales to the evaluation of the real curves enabled us, even in these cases, to assess the diffusion 
behaviour of the solid: the deviation from the ideal diffusion case was evaluated and the diffusion 
parameters were determined from the linear part of the dependence of the functional scale. 

Geometrical shape of solid grains 

The shape of the grains of the solid powders investigated is usually not uniform and well defined. 
Moreover, the characteristic size of the elementary volume L may not correspond to the grain radius; 
the dispersed solid samples contain aggregates of grains the shape and size of which determine the 
real diffusion time. It is known, that in case of powders of large surface area and expanded surface 
relief, the diffusion does not depend on the size and shape of the sample and is determined by the 
parameters of the crystal lattice only. Similarly, parameters of inert gas diffusion in the samples 
prepared as pellets from fine particles were determined. We have observed that in the case of 
well-pressed, dense pellets the inert gas release from the pellet can be described by the diffusion 
equations derived for plates, in the case of poorly pressed pellets, the inert gas release can be described 
by the equation derived for a sphere. 

The determination of the grain shape (which is then used in the diffusion model) of the sample can 
be made by comparing the experimental ETA curve with the ETA curve calculated for various shapes 
of sample, in the functional scales. The best-suited sample shape results in the corresponding 
correlation coefficient closest to unity. 

The influence of the shape of the sample on the curve of thermostimulated inert gas release has been 



discussed in Fig. 1. The respective curves, corresponding to the shape of plate and sphere are replotted 
in Fig. 2, using functional scales. It is evident that the functional scale for the single jump diffusion 
model in Fig. 2 should be considered as the basic scale for comparing various diffusion models and 
shapes. The change of the geometric shape of the sample is reflected in Fig. 2 by the deviation from the 
linear dependence in the low temperature range. In the high temperature range the correct values of the 
activation energy of inert gas diffusion can be determined from the linear part of the dependence. 

The inertia of the apparatus 

In our previous publications [5, 8] a detailed analysis of the influence of inertia of the apparatus on 
the ETA curve was made. The distortion of the curve of thermostimulated inert gas release in the 
measuring chamber is expressed by eqn. (17). 
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where N(t) is the number of inert gas atoms in the measuring chamber at time t, F(t) is the velocity of 
inert gas input into the measuring chamber [depending on the geometrical shape of the sample and 
determined from eqn. (3)], Z is the total velocity of the inert gas output from the measuring chamber 
(z-δ/V, being the flow rate of the carrier gas), V is the volume of the measuring chamber. 

The temperature dependences of the thermostimulated inert gas release calculated from eqn. (11) 
for the kinetic stage of the gas release, taking into account the distorting effect of the inertia of the 
apparatus, are shown in Fig. 3. 

The thermal dependences of Fig. 3 plotted in the functional scale are shown in Fig. 4. It is 
obvious that the main distorting effect of the apparatus inertia is pronounced on the high temperature 
part of the peak. The lower the value of Z, the more distorted are the curves. As follows from Fig. 3, 
there are sufficient linear parts of the curves to be used for calculating activation energy of diffusion. 
The inertia of the apparatus, however, results in incorrect values of the pre-exponential factors of the 
inert gas diffusion. 

The order of the thermodesorption reaction 

The kinetics of the inert gas release can be affected in some cases by mutual interactions of 
inert gas atoms or by the inert gas interactions with the defects (irregularities, impurities) of the solid 
structure. In this case the differential diffusion equation is expressed as follows: 
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where n is the formal order of reaction. Formation of gas associates is characterized by n = 2, i.e. by 
the second order equation of chemical reaction. In this case the peak width is not greater than that 
for n = 1, and the temperature of the peak Tm and its height depend on the initial inert gas concentration 
C0 in the sample. It is to be noted that the high probability of the inert gas trapping in the solid structure, 
characterized by n = 2 in eqn. (18), has to be reflected by the volume distribution functions of the inert 
gas. 

Figure 5 shows the temperature dependences of the inert gas release curves as influenced by 
various values of n; in Fig. 6 the same dependences plotted on a linearized scale are shown. As can be 
seen from Fig. 5, the order n of the inert gas trapping reaction can be estimated from the shape of the 
inert gas release curve. In Fig. 6 the linearized inert gas release curves are shifted for n > 1  and n < 1 
with respect to n = 1. In the low temperature range, shift to the left is observed for n < 1 and shift to 



the right for n > 1, the slope of the linearized curves being unchanged. In the high temperature range, 
inverse shift in the curves is observed with respect to the curve corresponding to n = 1, the 
dependences excepted that for n = 1 became non-linear. 

It should be pointed out that in the low temperature range the slope of the linearized curves in Fig. 
6 does not depend on n and the correct value of diffusion activation energy can be evaluated for the 
linear parts of the curves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The linearized temperature dependences of thermostimulated inert gas release taking into account 
the influence of the inertia of the apparatus (for notation of the curves see Fig. 3). 
 
 
 
 
 



Fig. 5. Temperature dependences of the thermostimulated inert 
gas release influenced by the inert gas trapping in the lattice of 
the solid. The following orders n of reaction between inert gas 
and lattice traps are considered, curves 1 - 8, respectively:  
n = 0.5, 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0. 
 
 
 
 
 
 
 
 

 

1UUU/I 
Fig. 6. The linearized plots of the temperature dependences of thermostimulated inert gas release supposing 
various orders n of the trapping reaction between the inert gas and the lattice traps. For notation of the curves 
see Fig. 5. 



FUNCTIONAL SCALE FOR RELEASE OF INERT GASES FROM SOLIDS LABELLED BY THEIR 
PARENT NUCLIDES 

In this case of labelling solids by parent nuclides of inert radioactive gases, the inert gases are 
formed by spontaneous radioactive decay of the parent, e.g., 228Th ⎯→⎯α 224Ra 220⎯→⎯α Rn. The inert 
gas diffi jn in the presence of the inert gas source is described by eqn. (19) 

22112
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∂

∂
=

∂
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 (19) 

where λ1 and λ2 are the decay constants of the parent isotope and the inert gas, respectively, C1 and 
C2 are the concentrations of the parent and inert gas, i.e. Ra and Rn, respectively. 

In the steady state of diffusion, the normalized diffusion flux (emanating power e) is expressed by 
eqn. (20): 

ε = 3y[(l/th(l/y))-y]       (20) 
where у = (l/L)(D\λ2)l/2 and the temperature dependence of D is determined by eqn. (4). The temperature 
dependences of emanating power for various values of activation energy of diffusion and pre-exponential 
factors are demonstrated in Fig. 7. In Fig. 8 these temperature dependences are shown in a linearized scale 
(for the calculation of the functional scale see Table 4). 

 

 
Fig. 7. Computed temperature dependences of emanating power during constant heating rate of plate sample labelled by 
the parent isotope of radon 22()Rn. The following values of £d (kcal mol"1) and In Do/L2\2 respectively, were considered 
in the calculations of curves 1-6: (1) 16 and 9; (2) 16 and 7; (3) 16 and 5; (4) 10 and 6; (5) 10 and 4; (6) 10 and 2. 

 

 

 

 

 

 
 



TABLE 4 
Functional scale for release of inert gases from solids labelled by their parent nuclides 
 
F(t/) U U F(U) U U
 (Increasing) (Decreasing)  (Increasing) (Decreasing 
0.01 15.7670 0.34 8.4418 0.67 6.5722
0.02 14.3741 0.35 8.3734 0.68 6.5177 
0.03 13.5564 0.36 8.3064 0.69 6.4627 
0.04 12.9740 0.37 8.2407 0.70 6.4071 
0.05 12.5208 0.38 8.1763 0.71 6.3508 
0.06 12.1491 0.39 8.1131 0.72 6.2937 
0.07 11.8335 0.40 8.0510 0.73 6.2357 
0.08 11.5593 0.41 7.9899 0.74 6.1766 
0.09 11.3165 0.42 7.9298 0.75 6.1165 
0.10 11.0983 0.43 7.8705 0.76 6.0552 
0.11 10.9002 0.44 7.8121 0.77 5.9924 
0.12 10.7187 0.45 7.7544 0.78 5.9281 
0.13 10.5510 0.46 7.6974 0.79 5.8620 
0.14 10.3951 0.47 7.6411 0.80 5.7940 
0.15 10.2492 0.48 7.5853 0.81 5.7238 
0.16 10.1122 0.49 7.5301 0.82 5.6512 
0.17 9.9830 0.50 7.4754 0.83 5.5757 
0.18 9.8605 0.51 7.4211 0.84 5.4971 
0.19 9.7442 0.52 7.3672 0.85 5.4148 
0.20 9.6332 0.53 7.3137 0.86 5.3283 
0.21 9.5272 0.54 7.2604 0.87 5.2370 
0.22 9.4256 0.55 7.2074 0.88 5.1399 
0.23 9.3280 0.56 7.1546 0.89 5.0362 
0.24 9.2341 0.57 7.1019 0.90 4.9244 
0.25 9.1435 0.58 7.0493 0.91 4.8028 
0.26 9.0560 0.59 6.9968 0.92 4.6690 
0.27 8.9714 0.60 6.9443 0.93 4.5197 
0.28 8.8893 0.61 6.8917 0.94 4.3499 
0.29 8.8096 0.62 6.8391 0.95 4.1522 
0.30 8.7322 0.63 6.7862 0.96 3.9139 
0.31 8.6568 0.64 6.7332 0.97 3.6113 
0.32 8.5834 0.65 6.6799 0.98 3.1912 
0.33 8.5118 0.66 6.6263 0.99 2.4833 
 
 
 
 
 
 
 
 
 



 

 

Fig. 8. The linearized temperature 
dependences of emanating power during 
constant heating rate of plate samples labelled 
by the parent isotope of radon. For notation of 
curves 1-6 see Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is obvious that from the linear dependences in Fig. 8 the activationenergy of diffusion and 
pre-exponential factor of diffusion can be easily evaluated. 

CONCLUSION 

The examples of application of the functional scales to the evaluation of diffusion parameters 
from the ETA curves presented in this paper promise a bright perspective to this method. The tasks 
which may be solved only by rapid computers [3], such as choice of the appropriate diffusion model, 
analysis of the diffusion model and determination of inert gas diffusion parameters and their errors 
can be easily solved when applying the functional scales using only a pocket calculator. 
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