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1. INTRODUCTION

Composite materials are today being more widely used in mem-
brane technology. A targetted search for such materials requires
the development of a systematic approach to the construction of
membranes which possess a given efTiciency and selectivity using
substances with known diffusion properties.

The aim of this review is to consider the prospects for using the
steric and chemical organisation of a heterogeneous material to
control the parameters of a gas-separating membrane. Consider-
ation is given primarily to an analysis of the current phenomeno-
logical theories of diffusion in heterogencous media and to math-
ematical modelling of the permeability of various types of such
media. Recommendations are given for selecting the topology of
the composite material which will provide the required transport
properties for the membrane.

Il. TYPES OF HETEROGENEOUS STRUCTURES AND THE
MAIN APPROACHES TO THE DESCRIPTION OF DIFFUSION IN
HETEROGENEOUS MEDIA

The methods for setting up the mathematical apparatus for dif-
fusion in heterogeneous media are determined by the types of struc-
ture of the heterogeneous materials.'™

In a "macroheterogeneous” medium which includes non-uniformi-
ties of structure comparable with the length of the diffusion wave,
there is a distinction between the mechanisms of sequential diffusion
(diffusion in a lamellar membrane, in which planar non-uniformities
of structure are orientated perpendicular to the direction of flow*),
parallel difTusion (diffusion along channels isolated from each other
and orientated along the direction of flow?), dissociative diffusion
(diffusion along interpenetrating networks of defects; this can be
regarded as parallel diffusion along interconnected channels between
which there is reversible exchange of the atoms of the diffusant®™),
and the mechanism by which the diffusive flow passes round indi-
vidual large obstacles of a specific shape and dimensions.>*'?  The
phenomenological theory of mass transport in media of this type is

fairly well developed (see, for example, Refs.1, 15). One exception
is the problem of transport in materials containing individual large
inclusions, a general solution of which is at present unknown. For
such systems there are also no methods for calculating the effective
coefTicients of permeability and diffusion.

The main class of "microheterogeneous” structures is made up of
dispersion media, i.e. solids containing a dispersion of inclusions of a
specific shape and size which have different thermodynamic and '
kinetic properties from the base material. A phenomenological
theory of transport in dispersion media was proposed by Maxwell
(see Ref.14) to describe the electrical conductivity of dispersions'*'*
and then adapted to the problems of thermal conductivity'® and
diffusion.?®2'  In this model a calculation is first made of the per-
turbations of the lines of diffusion flow caused by an individual
obstacle of a given shape (its dimensions are postulated to be much
smaller than the thickness of the specimen) situated in an inifinite
homogeneous medium and then the sum is taken of all the perturba-
tions caused by an ensemble of inclusions of the same shape
arranged in a specimen of infinite size. In early work this treatment
was used to describe diffusion in dilute dispersions but subsquently it
was developed as applied to concentrated dispersions and the orderly
packing of inclusions of phases of a different nature.*?2"?7  This
theory was used to describe diffusion in media containing inclusions
with a simple geometrical form: a sphere, plate, cylinder, ellipsoids
of rotation, etc. Unfortunately it does not take into account the
possibility of a discontinuity in the concentration profile at the
boundary between the inclusion and the enclosing medium. The
model has a great number of variants and, depending on the method
used to sum the perturbations, it leads to different expressions for
the effective permeability constant. Up to the present there has been
no success in using this theory to describe non-steady-state diffusion.

A model for diffusion in dispersion media which was developed
independenlly"'” was first proposed to describe the kinetics of
adsorption by biporous sorbents and later to describe the process of
sorption of vapours by filled polymers.*® Within the scope of this
theory the kinetics of non-steady-state diffusion from the surround-
ing medium into a specimen of a specific shape containing identical
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* inclusions (the shape of the specimen and the inclusions is made

arbitrary but simple: a sphere, cylinder, or plate), the dimensions of
which are considerably smaller than the length of the diffusion wave,
are discussed. Linear and non-linear situations were analvsed and
expressions given for the initial statistical moments from the kinetic
curve, so permitting estimates of the effective diffusion coefficients to
be obtained.>! A significant limitation of this treatment, severely
restricting its range of application, is the requirement that the diffu-
sion coefTicient in the inclusion be much smaller than the diffusion
coefficient in the base material of the specimen.

It would appear that a description of diffusion in a dispersion of
point defects can be obtained from the models discussed above by
simply reducing the size of the inclusions. However, in practice the
theory of diffusion in defect media was developed quite indepen-
dently by adapting the mathematical machinery which describes
diffusion accompanied by a chemical reaction between the diffusant
and the solid. Thus, diffusion with temporary retention of the
diffusant in the defects (reversible capture in the traps) is interpreted
as a reversible first-order chemical reaction,’** diffusion with perm-
anent capture as an irreversible first-order chemical reaction,* and
diffusion with capture in defects of limited capacity (i.e. diffusion
with adsorption at the defects which formally obey the Langmuir
isotherm) as a second-order chemical reaction.”*?? In earlier work
dilute dispersions of defects were considered and then a conversion
made to essentially heterogeneous media.***® This approach has
been fairly well developed so far: the appropriate equations for
Fick’s first and second laws have been rigorously set down, the
formulae for describing non-steady-state mass transport obtained,
and the expressions for the effective diffusion coefficients given.

For example, the expression for the effective diffusion coefficient in
a concentrated dispersion of point defects takes into account the
diffusion coefficients both in the enclosing medium and at the
defects and also the occurrence of different types of sorption iso-
therm in the inclusions and in the main component of the medium.*®

A special class is formed by structures generated from dilute
dispersions of point inclusions when the volume fraction of the latter
is increased (for brevity in the present work we shall call such
heterogeneous substances percolation-type structures**!). The
importance of such structures is due to their flexibility which allows
conversion from one of the types of structure discussed above to
another.

In fact, dispersion of point defects occurs at low concentrations of
the inclusions. As their concentration increases the point inclusions
are joined together in extended formations (clusters) and the dis-
persion is characterised by functions for the size and shape distribu-
tion of the clusters. In spite of the random nature of the cluster
formation this type of dispersion medium obeys strictly defined
statistical rules and the evolution of the system can be quantitatively
described in terms of percolation theory using such concepts as the
percolation threshold and the critical index.? At a certain value of
the volume fraction a continuous cluster is generated (there is
"puncturing" of the membrane accompanied by a sharp change in
the transport properties of the membrane). In this case, direct
transfer is impossible along any of the components of the hetero-
geneous structure (an analogue of a lamellar medium). When the
volume fraction of the new phase is increased further reversal of the
phases takes place, i.e. the old phase now forms inclusions in the
new,

It is clear that, depending on the volume fraction of the inclu-
sions, diffusion in a percolation-type medium can be described as
"chemical” diffusion, diffusion with reversible capture, diffusion in a
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dispersion medium, dissociative diffusion, or dispersion in a lamellar
medium, A unified description of the evolution of the system from
a diffusion point of view requires the percolation theory to be amal-
gamated with the equations for non-steady-state transfer. However,
this course involves serious difficulties. In its current form the
percolation theory requires the complete absence of transport along
one of the components of the medium and is used only to describe
steady-state conditions of permeability.

To sum up this short analysis of knowh models for diffusion in
heterogeneous media the following comments can be made.

(1) There are two main approaches to setting up the mathemati-
cal machinery. The first is based on replacing the heterogeneous
medium by a homogeneous medium with the same efTective diffusion
properties. This replacement can be made if the characteristic size
of the non-uniformities in the structure is smaller than the length of
the diffusion wave. The second approach is used to describe dif-
fusion in media containing individual large inclusions whose size
clearly exceeds the length of the diffusion wave. In this case
account is taken of the spatial arrangement of the components of the
medium, the local values of the coefficients of solubility and dif-
fusion in each component, the shape and size of the inclusions, and
also the difTusion resistance of the phase boundary.

Unfortunately up to now these two methods of describing dif-
fusion in heterogeneous media have been developed quite indepen-
dently of each other. Moreover, even within the framework of a
single approach there have arisen different vanants which start from
almost the\s}me physical principles but lead to different final expres-
sions. For example, depending on the method chosen for averaging
the concentration field, the permeability constant P of a dispersion
of inclusions is given by the formulae:'?’

L_Pn'-i'P.—?Q:(P.—P:‘
P Prr 2P, + @y (Py — Py)

where ®; and ®; are the volume fractions and P, and P, the
permeability constants of components | and 2 respectively;

P o Pt — W — 0y (2P, — 2P — W)
P, Py 2Py — W + @y (P, — Py + W)

where W = 0.78(P; - P))}/(2P, + P,); or
P\P* — 3P,P,P* + (3PP} + (P, — P O}) P — PP} =0
2P' 4 [P, — 2P, — 30, (Py — P,)] P — P,P, =0

P Pet 2P, B (Py—P) @) ]-'
(P—._l)uw'[ mor Ot R T

where for simple cubic packing of spheres p = 0.523 '* (in Ref.23
B = 1.31), for body-centred cubic packing of spheres B = 0.129,%
and for face-centred cubic packing p = 0.0752.7

An analysis of these expressions shows that they give approxi-
mately the same results if P, < P, but considerably different results
if P, > Py,

With such a diversity of expressions a natural question arises:
which of these formulae is most valid physically and universal?
Below, by analysing the known models within the framework of a
single methodological approach, we shall discuss diffusion in various
types of heterogeneous media (dispersion, lamellar, containing
individual inclusions, etc.) and shall show that the modified Maxwell
equation generated as a result of this analysis allows almost all the
known methods of describing diffusion in heterogeneous media to be
unified. The adequacy of the treatment will be checked by com-
parison with the results of mathematical modelling of diffusion in
heterogeneous media.*’
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. (2) Almost all the structure types described above are represented
among specific polymer systems.****  For example, parallel diffu-
sion is observed in polymers with a spherulitic structure when the
membrane thickness is comparable with the diameter of the spher-
ulites.**  Sequential diffusion takes place in lamellar membranes
obtained by compressing several films with different diffusion prop-
erties, in polymers whose surface has been modified chemically or by
radiation, etc. In investigating composites based on polymers and
porous specimens the distortions of the diffusion flow lines must be
taken into account. The geometrical form of the non-uniformities
in the structure must be allowed for in work with crystalline poly-
mers or filled materials.’’

Diffusion with temporary retention of the diffusant in traps
occurs in glassy polymers, block-copolymers, ete. A model for
dissociative diffusion will, generally speaking, always be used in
describing the processes of mass transport in polymers: the presence
of macrochains necessitates taking into account diffusion along two
interconnected channels (along and across the chsins) which involve
different values of the diffusion coefTicient.

The application of the theory of diffusion in heterogeneous media
1o real polymeric solids often leads to inadequate results: the param-
cters of the shape of the inclusions calculated from diffusion data do
not correspond to those measured on an electron microscope.?!

This is because definite geometrical shapes for the defects in the
structure are rarely met in actual systems. Furthermore, a whole
spectrum of inhomogeneities in structure is usually present in the
materials. Such a situation occurs, in particular, on reversal of the
phases.

These difficulties can be overcome by introducing into the mod-
ified Maxwell equation a continuous geometrical factor, the values
of which are either determined experimentally or calculated by
mathematical modelling methods.

(3) In membrane technology a very important aim is to develop
methods for a directed choice of the spatial and chemical organ-
isation of the membrane structure, which will ensure that the effici-
ency and selectivity of the membrane are high. Below we shall set
out a theory of diffusion in heterogeneous media for describing the
permeability to mixtures of gases and demonstrate a method for
choosing a spatial structure of the membrane that is optimal from
the point of view of solving problems in membrane-separation of
gascous mixtures.

IIl. ANALYTICAL TREATMENT OF THE PERMEABILITY OF
TWO-COMPONENT HETEROGENEOUS MATERIALS

The following concepts are used in setting up a phenomenological
theory of mass-transport in heterogeneous media:

the topology of the medium, i.c. the spatial arrangement of the
discontinuities (layers, inclusions, dispersions of inclusions, etc.);

the diffusion properties of the initial components of the medium
(the coefTicients of difTusion and solubilily in these components of
the substances being separated);

the type of sorption isotherm of the diffusant in each of the
components of the medium; and

the type of diffusion experiment, i.c. a certain set of initial and
boundary conditions (in the present work we were restricted to the
permeability method).

The output parameters are:

the permeability constant of the heterogencous medium P which
determines the magnitude of the steady-state flow through the
membrane;

Russian Chemical Reviews, 57 (6), 1988

the mean concentration of the diffusant in the specimen;

the efTective non-steady-state diffusion coefficient being used to
estimate the time taken to reach a steady state;

the form of the conceatration and kinetic dependences;

the dependence of the diffusion parameters on the density of the
inclusions and their shape, the structure of the heterogeneous mate-
rial (thickness and form of the membrane, size of the inclusions,
etc.), the partial pressure at the entrance of the membrane, the drop
in pressure at the specimen, etc.

a b
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Figure 1. Main types of heterogeneous system.?

We are restricted to consideration of five main topological types
of two-component material. In the first type of material, mass
transport takes place along two channels isolated from each other,
i.e. there is parallel diffusion (Fig.1a). In the second type of
membrane there can be reversible exchange of the diffusant atoms,
i.e. dissociative diffusion (Fig.15). In the next type of structure th
diffusion medium contains inclusions of a specific shape and size (1
an example cubic packing of spheres is shown in Fig.lc). A lamel
lar medium (Fig.1d) gives sequential diffusion through layers of
different components. The fifth type is a percolation-type structu
(a dilute dispersion of point defects is shown in Fig.le and a dis-
persion of clusters of defects in Fig.1/).

The process of diffusion in & heterogeneous medium is usually
considered as a random walk of the diffusant particles in the enery
field created by the material of the medium (the field does not
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change when the diffusant particles pass through it). For a homog-
eneous isotropic medium the diffusion coefficient D can be repre-
sented in the form:

D we kd®
with
k=k,-exp(—AG/ky T)==1lv,-exp(—AG/kyT)

where k is the rate constant for the passage of a diffusant atom from
one energy state to another, d is the length of a diffusion jump, i.e.
the distance between two nearest states, y is the number of routes by
which a transition from one state to another is possible, fis a corre-
lation factor (the fraction of successful jumps, which we shall asume
to be 1), vo is the number of jumps in unit time, AG is the energy of
the transition from one diffusion state to another, ky is the Boltz-
mann constant, and T the temperature.

X
Figure 2. Energy diagram for one-dimensional difTusion (x is dis-
uuce).z

In a twocomponent medium there are two types of energy state.
A site in the base material of the solid will be designated by a sub-
script 1 and a site in a non-uniformity in the structure by a subscript
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2. To describe diffusion in such a system we shall use four transi-
lion rate constants kyy, ki3, ka;, and k; and the corresponding
lengths of the diffusion jumps d|y, d)3, da;, and dyy.  All these
parameters are independent of the diffusant concentration but
dependent on the temperature:

kym=<k,-exp(—AG/kyT)

The pre-exponential factor is determined only by the nature of the
diffusant.

Certain types of energy diagram for diffusion’in a two-component
medium are shown in Fig.2. The migration of the diffusant is
determined by the positions of the two potential wells of types 1 and
2 relative to the zero level (i.e. by the energies G)o and G2) and also
by the magnitude of the energy barriers on entrance to and exit from
the potential well (AGy, for a transition in the base matrix, AG); for
a transition from the base matrix to an inclusion, AGy; for diffusion
in an inclusion, and AGj; for exit from an inclusion to the base
material of the specimen). If the free energy is higher in state 2
than in state 1 (Fig.2a) it is unfavourable for the diffusant to remain
in state 2 (an "anti-trap™) and it tries to leave. On the other hand,
a state with a lower free energy (Fig.2b) fills up with diffusant
spontaneously (a "trap"). The transition to another phase may be
hindered (AG,; > AG,,, Fig.2c), remain the same as on transition to
an adjacent base state (Fig.2b), or may be facilitated (Fig.2d),
depending on the properties of the boundary between states 1 and 2.
If component 2 is an extended inclusion, transitions of type 2—2
appear on the energy diagram (Fig.2e). ‘

By the local diffusion coefTicient is understood the value Dy =
k,,df,. Note that Dy, = D, and Djy =D, (where D, and D; are the
diffusion coefTicients in phases 1 and 2), and that in general Dy is
not equal to either Dy; or Dyy. Thus the presence of additional
energy barriers at the entrance to a defect leads to a three-phase
diffusion problem for a two-component heterogeneous medium.**

By analogy with the concepts used in describing the kinetics of
chemical reactions, the value of the ratio of the rate constant for a
1—2 transition to the rate constant for a 2—1 transition is called the
equilibrium constant:

K == kyyfhy, = D,/ Dy == exp (— (G, — AGy)/ky T) == exp {(Gyy — Osy)/ k' T}

We shall now turn to 8 consideration of the population of the
energy states of the system by the diffusant atoms. The following
symbols will be introduced:

O, =N,/Nm=VJV, @, =NJ/N=V,/V (0,+O,=1)

are the volume fractions of components 1 and 2 respectively, where
N, and N, are the numbers of states of typez 1 and 2 (N + Ny =
N), V, and V; the volumes of components 1 and 2 (V; + Va= V)
in the composite material; the relative populations are B = m/N
and 8; = ny/N,, where n) and n; are the numbers of diffusant atoms
occurring in states | and 2; the total population (solubility) of the
two-component system is @ = n/N = (1, + ny)/(N; + N3) and the
mean population 80 = 0,0, + 00,

The linear sorption isotherm is described by the expression:

8 (x==0) = K,p,

where K, is the solubility constant and py the partial pressure of the
diffusant on entry to the membrane.

The exchange of the diffusant atoms between the two types of
potential well is usually represented in the form:

L
Vi) + ¥, 02V, (0) + Vi (A)



534

where V(a) and V(A) are the diffusant atoms in potential wells of
types 1 and 2 respectively and ¥,(0) and V0) are vacant sites. If
each of the components of the medium is characterised by a linear
sorption isotherm then the equilibrium solubility of the diffusant in
the first component will be 8, and in the second 85y. Linearity of
the sorption isotherm implies that the concentration of free sites in
the matrix of the heterogeneous material is sufficiently large, i.e. the
relative population is less than 1. At equilibrium:

m NN =k k=K 8, = K8,

i.e. the equilibrium constant is the ratfo of the local solubilities,

K = 8,/8,. Taking into account that the relative population of the
first (main) component is not altered by the presence in the material
of the second component, the total population is given by the
expression

0=0,,(0, + K,

where 8, is the population of an "ideal” matefial containing no
non-uniformities.

There are various methods for determining experimentally the
solubility of the diffusant in the solid: measurement of the mass of
the specimen in a steady state of permeability, determination of the
amount of diffusant in the specimen after a steady state has been
reached, or by dividing the steady-state flow of the diffusant through
the membrane by the diffusion coefficient determined from the time
lag. In a homogeneous material all these methods give the same
result and the solubility measured by the permeability method is
equal to half the value determined from the equilibrium sorption.
For a heterogeneous medium, on the other hand, such conformity is
not observed although the relationship 8, = KB, is always valid.

Let us turn to a consideration of the value of the permeability, i.e.
the constant of proportionality between the steady-state flow of the
diffusant through the membrane and the difTerence in the partial
pressures on entry to and exit from the membrane. The symbols
X2 = Py/Pyand y = P[P, are used. The known expressions for
diffusion in heterogeneous media can now be reduced to a common
form of notation.

For dissociative diffusion and its special case of parallel diffusion:

x=®, 4+ x, Py 5—9..(0,+K0,) n

For a dispersion of inclusions of identical shape and size (modi-
fied Maxwell formula):

X = (P, + a7, OO, + a®); §m= B, (®, + KO,) ()

where

ama)/(a,—1+x),

ap being a geometrical factor depending only on the shape of the
inclusion. For some simple forms of inclusion this can be caku-
lated analytically: e.g. ap = 3 for inclusions with a spherical shape
and 2 for inclusions in the form of a cylinder with its axis perpen-
dicular to the diffusion flow, etc. Eqn.(2) is valid for dilute suspen-
sions (®; < 0.3); on changing to closest packing of the inclusions
additional terms must be introduced into formula (2).' On the
whole, Eqn.(2) is satisfied as long as the inclusions retain a definite
shape and continuous diffusion flows along one of the components
of the heterogeneous medium are possible. It is important to stress
that when there is reversal of the phases (i.e. when the matrix and
the inclusion change roles) "hysteresis" of the permeability may
occur.
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For a lamellar material the mean concentration of the diffusant
(solubility) in the membrane for a steady state of permeability is
given by the expression:*

8= 8, (1@} + 20,0, + KO}/ (1,0, + @y)
and the permeability is equal to:
x=(®,+®/1)~"

The common form of notation for the permeability of the main
types of structure which is used in the present work shows clearly
the general character of the modified Maxwell formula (2), from
which the other diffusion models arise as special cases when an
appropriate choice of the geometrical form parameter aq (2o > 1)
made. The limiting cases are parallel diffusion (ap = o) and
sequential diffusion (ap = 1). This approach allows us to extend
the application of the Maxwell formula derived for the case of
inclusions of a simple form (discrete integral values of a,) to cases
where the inclusions have an arbitrary structure (continuous frac-
tional values of ag). Numerical modelling methods can be used tc
find the values of aq for inclusions with the "exotic" shape of rec-
tangular blocks, crosses, etc., for a lamellar medium with a variabl
boundary, and also to study the evolution of ao during reversal of
the phases, which results from formation of the nuclei, growth of t
nuclei of a new phase, nucleation and growth of the nuclei, etc.
The value of ap is a measure of the distortions of the flow lines, i.e
the lines along which the product of the diffusion coefficient and t!
gradieng of the diffusant concentration remains constant: for a giv
X2 the smaller is ao the greater is the distortion.

In the analysis of the permeability of a dilute dispersion of poin
inclusions there are considerable difficulties due to the disappearan
of diffusion along the second component of the medium at small
values of ®,. In such structures the transport properties of the
material are determined mainly by the characteristics of the inter-
component boundaries. In accordance with a statistical treatment
we may write, using our symbols:

Dy + KD,

Y=} 4 Oy Lo, 0

Using the relation Dj; = KDj;, we obtain:
=0 + 222 0,0, 4 5.0 |
Dy, )

= 6, (¥, + K,)

The expressions obtained are valid for any values of ®,, i.e. the)
are suitable for describing the permeability of a dispersion of point
inclusions during the complete reversal of the phases taking place t
a "percolation” process.

V. MATHEMATICAL MODELLING OF THE PERMEABILITY OF
HETEROGENEOUS MEDIA

The analytical approaches to the description of diffusion in
heterogeneous media which were discussed previously are valid onl
with various kinds of assumptions and have a limited use. Numer
ical methods of mathematical modelling*® must therefore be used t
solve such problems of the permeability of heterogeneous media as
transport in a composite containing a concentrated dispersion of
inclusions or in & medium containing irregularly shaped inclusions,
when there is a complex distribution of non-uniformities through t/
thickness of the specimen, when there are specific energy barriers
the entry to the inclusion, etc.
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. In that work*® modelling was carried out for diffusion in systems
#ith linear sorption isotherms on the basis of the statistical treat-
ment described above. The whole of the heterogeneous material
was divided by a rectangular grid into separate cells corresponding
to different diffusion states; a matrix of the energy transitions AGy
was then set up and from it the rate constants for exchange between
diffusion states of different types (ky) were calculated. AfRer the
initial and boundary conditions had been assigned the resultant
system of linear differential equations was solved by a Monte Carlo
method with a constant time interval.

The program*’ was intended for modelling of mass transport in a
two-dimensional heterogeneous medium with an arbitrary topology
of inclusions in various diffusion experiments using permeability,
sorption, and desorption methods, the method of concentration
waves, local diffusion probing, etc. In the course of the calculation
the distribution of the concentration of the diffusant in the hetero-
geneous medium and the total and local flows across the outer
boundaries of the specimen are indicated and the total population of
the specimen by the diffusant (the solubility) is found, The pro-
gram also enables a treatment of the kinetic functions to be carried
out with the aim of determining the non-steady-state effective dif-
fusion coefficient. For a "percolation” type of medium the program
enables a cluster analysis of the inclusions to be carried out, the
open, continuous, and closed porosities to be determined, and the
mean size of the inclusions to be found.*> A test of the program,
performed for a homogeneous medium, showed a high accuracy
(~0.1%) for the calculation of all the output parameters and also
that the postulated functions ky = f(AG,) are satisfied.

Modelling of diffusion in heterogeneous media was carried out for
an extensive set of X, x3, and ®, parameters for all the structures
discussed above. In the first stage, situations for which analytical
formulae are known were investigated and in the second, situations
for which there is no phenomenological theory of diffusion.

A test of known published models showed that there is a rigorous
mathematical description only for cases of paralk] and dissociative
diffusion and also for diffusion in a lamellar medium. When
extended inclusions of a specific shape and size are preseat an anal-
ytical description is possible for certain simple forms (sphere, cylin-
der, spheroid), for which the "experimental” values of ay agree with
the theoretical values and for ®; < 0.3. As ©, increases the des-
cription of the process by the analytical formula becomes worse,
with g approaching x; more rapidly than the theory predicts. We
have obtained confirmation ** of the occurrence of diffusion hyster-
esis, whereby the permeability of heterogeneous materials of identical
composition depends on their method of preparation and in partic-
ular on whether a dispersion of component 2 in component | was
prepared or vice versa. Confirmation was also obtained of the
assumption that the geometrical parameter a; depends not only on
the ratio of the width of the inclusion to its length but also on the
"distorting power" of the particular form of inclusion as regards the
diffusion flow lines. In particular, the modelling method gave the
value ap = 1.55 £ 0.15 for an infinite block with a square cross-
section placed perpendicular to the direction of flow (the ag value for
such a geometry cannot be calculated analytically). This value is
smaller than the value @y = 2 for a cylinder because a block with a
square cross-section distorts the diffusion flow lines considerably
more severely,

It is important to stress that the efTect of the geometry of the
inclusions on the permeability depends considerably on the energy
parameters of the components of the heterogeneous structure. A
typical dependence of x on K and D,/D, is shown in Fig.3; the
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example shown is of the permeability of a dispersion medium with
inclusions in the form of a cylinder, for which @y = 2 and ®; = 0.1.
Thus, when x; = 1 (which does not imply at all that the diffusion
properties of the components are identical, since for linear isotherms
%2 = KD,/D,) the permeability is independent of K and Dy/D,.
When y; = 0 (the case of impermeable obstacles) the permeability
of the heterogeneous medium depends on both its composition and
the geometry:
ag— |

x=0, m &)
If, however, the inclusion is highly permeable (a pore, X, ), the
permeability of the heterogeneous medium increases more slowly in
the general case, reaching the limiting value x = 1 + ao®,/®,.
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Figure 3. Dependence of the permeability on the transport param-
cters of a composite? (a lattice of cylinders, ag = 2, ®; = 0.1).

In the modelling of the permeability of a dispersion of point
inclusions, the phenomenological model gives only a semiquantitative
description. The divergence from theory reaches 20— 30% but the
theoretical and "experimental” functions x(®,) change in a similar
way. The theory is qualitatively correct in prediciting the occurrence
of extrema in the function P(®,) and also their positions, to within
~10%. An attempt was made to improve the accuracy of the
numerical calculation by changing the coordination number of the
diffusion state from 4 to 8. The discrepancy between the theoretical
and "experimental” results was then reached. We assume, although
it was not stated when the phenomenological model was set up,*®
that in the statistical summation of the four types of flow it is tacitly
understood that the coordination number is equal to infinity. A
detailed analysis of this matter showed that, even with high values of
the coordination number, complete agreement between the theoret-
ical conclusions and the results of the mathematical experiment can-
not be obtained. Thus mathematical modelling of the permeability
of heterogeneous media of the "percolation™ type by numerical
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methods gives more reliable results because in thc@iqﬁu__ treat-
ments no account is taken of the distortion of the lines of diffusion
flow around the point inclusions and their clusters.

1
" [N

0w,

Figure 4. The permeability of percolation-type structures: ) par-
allel diffusion; 2) a lamellar medium; 3 —5) percolation structures
for which Dy = 0 (3), Dyy < D1z < Dy (4), or Dy3 » Dy and
D)3 » D3y (5) (from data in Ref.43).

The dependence of the permeability on the volume fraction of
the second component is shown for various types of structure in
Fig.4. For almost all the structures the x(®;) curves lie between the
two limiting cases: dissociative or parallel diffusion (the straight line
1) and diffusion in a lamellar medium (curve 2). Exceptions are
provided by dispersion structures of the "percolation™ type (Fig.1).
As follows from Eqn.(4), the dependence of x on the local transport
parameters envisages an effect of the intercomponent layers on the
transport (it has already been mentioned that in this case a situation
arises which requires the solution of a "three-phase” diffusion prob-
lem for a two-component medium). Depending on the conditions
at the boundary between the components, the x(®;) curve may pass
below the straight line for the limiting case ap = 1, corresponding to
a low permeability of the intercomponent layer (D3 = 0, curve 3),
with a possible minimum on the curve; or it may be completely
within the permissible region (the permeability of the intercomponent
layer lies between the corresponding values for the components of
the medium, curve 4) or it may be situated above the limiting
straight line for ag = oo. The last situation arises when the perme-
ability is high at the boundary (i.e. when Dy » Dy and D3 » Dj,
curve 5), a maximum on the x(®;) curve being possible.

In addition to the steady-state values of the flows, permeability
kinetic curves have been obtained by numerical methods*’ and the
efTective diffusion coeMicients calculated.*®  Without discussing these
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results in detail we note that in a number of cases the theory predict
the possibility that substantial errors will arise in the experimental
determination of the steady-state flow of the diffusant through the
membrane and hence of the permeability constant. This is because
a "pseudo-steady-state” of permesability may be reached for certain
values of the local transport parameters; at diffusion times 2—3
times greater than the delay time an almost constant flow through
the membrane (significantly smaller than the steady-state flow) is
established and this may be erroneously regarded as a true steady
state, although times 20 —30 times longer are required to achieve thi
latter.

The total population (solubility) in all the types of structure
considered agrees with the values predicted theoretically.

V. SELECTION OF THE STRUCTURE OF THE MATERIAL AS /
MEANS OF CONTROLLING THE EFFICIENCY AND SELEC-
TIVITY OF A GAS-SEPARATING MEMBRANE

We have so far discussed the permeability of membranes with
respect to any one gas. We shall now turn to the problem of the
membrane separation of a mixture of gases and assess the prospects
for a directed choice of the structure of the heterogeneous medium
in order to achieve the optimum efficiency and selectivity for the
membrane.

Suppose that a mixture of two gases is supplied to the input side
of a membrane and the process of transport of each of them throug
the membrane is characterised by its own set of parameters D, X, g
and 8. _These parameters are dependent on the composition and
topology of the membrane but independent of the composition of
the gaseous mixture. We shall take as the selectivity factor the
relationship:

a=ax/x" (

where 3’ and 1" are the permeabilities of the first (object) and
second gases respectively and o, are the selectivity factors of the
initial components, a, = Pl'/l’;

The effectiveness of operation of a gas-separating system is char.
acterised by two parameters: the efficiency (i.e. the permeability fo
the object component, y'), which determines the amount of produc
obtained, and the selectivity, which determines its purity. Opti-
misation of membrane separation is a complex problem because it
far from always possible to obtain high efficiency and a high prod-
uct purity simultaneously. As is known, membrane separation cat
be used either to purify the flow passing through the membrane or
to concentrate the object product over the membrane. The requir
ments for selecting 3 and a are of course different in these cases.
If the object product is the gas passing through the membrane, hig
values of y’ and « are chosen but in the reverse case low values of
and «a are required.

The effects of the local transport parameters of the heterogeneo
medium on the flow of the object component ' and on the selec-
tivity factor a are different: a decrease in DyDjand K' leads to a
reduction in ¥’ and a, but a decrease in D3/Dy and K" increases a
while leaving x’ unchanged. Since the change in ¥’ and a in heter
geneous structures of different types takes place differently, then,
depending on whether the membrane works by purification or con
centration, these parameters will have the optimum values for quit
different spatial organisations of the material. It follows from
Eqn.(6) that a is a function of six parameters (if the topological
factor ag is taken as one of them). We shall therefore restrict ou
selves to a few examples.
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The first two examples are taken from Ref.50 in which measure-
ments were made of the gas permeability of PVTMS (component 1) —
PDMS (component 2) block copolymers of various compositions
(PVTMS represeats polyvinyltrimethylsilane and PDMS polydimeth-
ylsilane). We shall discuss Kr—Xe and Hy— Xe gas mixtures, the
transport parameters of which are given in the Table (the problem of
separating such gas mixtures arises in the AES gas purification sys-
tem). The Table also shows the experimental values® of the steady-
state flows and the selectivity factors together with those calculated
by us for different structures. For a Kr—Xe mixture the experi-
mental selectivity factor (a = 0.56) is close to the value cakulated
(0.61) for the parallel (or dissociative) diffusion mechanism (see
Table, gas mixture No.1). However, there is a considerable discrep-
ancy between the experimental and calculated values of ¢’ (2.04 and
10.4 respectively). This may be explained by extra resistance to
transport at the boundaries between the components of the block
copolymer. In this case the membrane used in the experiment is
close to the optimum from the point of view of concentrating the
Kr. In using a membrane for Xe purification its efficiency can be
increased (by a factor of 5) if a structure which ensures a dissociative
or parallel diffusion mechanism is created.

For an H;— Xe mixture (Table, mixture No.2) the theoretical
value of the efficiency with respect to the object material (H,) is
slightly dependent on the structure of the membrane and is close to
the experimental value (evidently for hydrogen, resistance to dif-
fusion at the boundary between the components does not play a
significant role). However, the theoretical analysis shows that the
membrane structure used in the experiment was not the optimum as
regards selectivity; in this case a lamellar membrane should be used.

The possible occurrence of extremal relationships between o and
the structure are demonstrated on the model example (Table, mix-
ture No.3). Here, to obtain the optimum ratio between the flow
and the selectivity a structure having a dispersion of cylinders (fila-
ments elongated perpendicular to the flow) must be created. 1f,
however, it is required to concentrate gas 1 over the membrane and
to pass gas 2 through it, then it is better to arrange for sequential
diffusion (i.e. to prepare a membrane in the form of layers orien-
tated perpendicular to the flow).

The effect of the structure on the gas-separation parameters X
and « is conveniently studied using the topology — property diagrams
which we have proposed. To construct such diagrams (Fig.5) the
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reciprocal of the geometrical factor ag is plotted along the abscissa
(the value of 1/aq varies from 0, corresponding to no perturbation of
the flow lines, to 1, corresponding to a severe perturbation) and X’
and a as the ordinate.

Effect of topology and local transport parameters on the perm-
eability (') and selectivity (a) of a heterogencous membrane.*®

Calculated for different "
Mix- Experi-
ture Gas D,'Dy X a P‘nnm- types of structures®® mentsl
e
no. ster : p m | (Rel.50)
1 Kr 7.9 0.67 1.5 1 10.4 | 1.79 | 1.41 | 3.81 2.04
Xe 1604 0.52 'y 25.8 | 1.82 | 1.4t [ B.37 —
a V61| 1.46|1.49|0.68 | V.50
2 H; 2.40 | 1.9 | 11.0 b 1.45) 4.0 | 1.22 | 1.43 1.4
Ae 1004 V.52 b 25.62| 1.82 | 1.41 | 8.37 —
a voz|7 [9.4 |15 27
3 1 0.1 1.0 7.0 b & 0.73| 0.61 | 0.27 | 0.54 —_
2 1. 5.0 1 15.71] 1.81 | 1.42 | 5 & —_
« 0.32]2.34 | 1.33 | 0.70 -

*The parameters ¥, 1", and « for the gas mixtures nos.1 and 2
were calculated using published experimental data;*® gas mixture
no.3 is a model.

*s®, = 0.3; I) parallel diffusion; 1I) a dispersion of cylinders;
111) a lamellar medium; 1V) a dispersion of point inclusions,

-

These diagrams first of all enable the geometrical factor ao to be
estimated from gas permeability data. ag can be determined experi-
mentally by measuring either the efficiency of the membrane or the
selectivity factor. Agreement between the values of ao found by
different methods indicates the absence of resistance at the boundary
between the components. The discrepancy between the values of ao
obtained from y’ and a (in Fig.5 the rarige of uncertainty for aq is
shaded) is large for the Kr—Xe mixture (Fig.Sa), far larger than the
corresponding range for the Hy—Xe mixture (Fig.5b).

Such diagrams can thus be used for diffusion-structure analysis,
i.e. to determine the topological characteristics of a membrane used
in a separation process. On the other hand, they can be used to

a
15 :M
a -
J10 iy
)
a1 0 1 U
14 0 03 1a 0 0.5 1J
v, /a, 74,

Figure 5. Permeability (or selectivity) —topology diagrams: a) separation of a Kr—Xe mixture on & PVTMS —PDMS block copolymer;*
b) separation of an H— Xe mixture on & PVTMS — PDMS block copolymer;*® ¢) a model example (gas mixture no.3 in the Table).*®
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select the optimum structure for gas-separating membranes because,
for known transport properties of the initial components, they dis-
play clearly the properties of any heterogeneous structures. In the
case shown in Fig.5a selection of the structure enables primarily the
efficiency of the membrane to be controlled, altering it by an order
of magnitude; the selectivity, however, is only altered by a factor of

LS.

Fig.5b illustrates the reverse case: the structure of the mem-

brane controls mainly the selectivity while the efficiency remains
almost constant. A more complex version is shown in Fig.5c.

Here, as was indicated above, a change in the topology leads to
extremal values of a. The region where the extremum occurs is
shown clearly in the diagram. Analysis of the component functions
x' and « allows a quick estimate of, for exmaple, the loss in effici-
ency of the membrane as the selectivity is increased; there is also the
possibility of introducing a single component function, the plotting
of which requires additional information on a specific chemical-
technological process.
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