EXPERIMENTAL METHODS FOR STUDYING THE DIFFUSION OF
RADIOACTIVE GASES IN SOLIDS.
VII. SORPTION METHOD

I. N. Bekman UDC 539.16.07:532.72:546.296:678.742

The details of the use of a sorption method in the study of the diffusion of gases
and vapors labeled with radicactive tracers in solids have been considered. Three
variants of diffusion systems, which permit the determination of the diffusion co-
efficient and the solubility constant of gases both from the increase in the amount
of diffusate in the sample and from the decrease in its amount in the reservoir,
have been tested. Different ways of conducting the experiment have been discussed.
A universal method for taking into account the processes of the absorption and scat-
tering of radiation in the material of the sample has been proposed. The experi-
mental results were treated with the aid of a specially developed program package,
which is realized on computers of the BESM-6 type. Various mathematical models of
the diffusion of gases in solids have been analyzed. Solutions of the diffusion
equations under the boundary conditions of the sorption method for the cases of
diffusion with trapping, dissociative diffusion, and diffusion in a plate con-
taining spherical inclusions have been obtained. The method has been tested in

the example case of the diffusion of a radiative inert gas, viz,, radon-222, in
low-density polyethylene.

The sorption method based on the study of the migration of an impurity from the surround
ing atmosphere into a solid is one of the main methods of gas diffusion. It makes it possib
to simultaneously determine the diffusion coefficient and the solubility constant. During an}
experiment, either the decrease in the concentration of the diffusate in the gaseous phase org
the increase in its amount in the sample is detected. The sorption method has a number of ;
advantages over the permeability method. For example, the consolidation of the membrane, whi
is so important in the study of the permeability, is not a problem for sorption. The studyd
diffusion in samples of any geometry, including powders, is possible in the sorption method::
The absence of a pressure drop permits work with brittle and elastic materials and even with
melts. In addition, the individual defects in the membrane, which are capable of Completelj%
altering the permeablllty kinetics, have practically no influence on the sorption kinetics.
Thus, it becomes possible to study diffusion in very thin films with a low diffusion coef- “ig
ficient. %

e,

In the present work we shall describe systems and methods for conducting an experiment?
and treating the results, which can be used in the study of diffusion processes by the radio-
chemical variant of the sorption method. The proposed methods have been applied to the deter:fé
mination of the diffusion parameters of radon (?*??Rn) in low-density polyethylene. é :

We prepared and tested three systems for determining the diffusion coefficient and thef
solubility constant of radioactive gases by the sorption method. ;

Variant 1 (Fig. 1A). The apparatus consisted of a glass ''chain," in which samples inrg'

the form of tablets or films were placed in the individual intercommunicating cells. The %3
lowest cell contained zeolite. After evacuation the cell was filled with a radioactive gas g
(e.g., radon). After the zeolite was cooled to the temperature of liquid nitrogen, all the%
radon was transferred to it., The cells were evacuated again to remove the carrier gas (help_
Then the zeolite was heated, and an even distribution of the diffusate among all the cells

was achieved. After the ampul with the zeolite was preliminarily removed, the chain was £
separated into individual ampuls. This method makes it possible to achieve a high specific ; A
activity of the gas at a total pressure of 1.33 Pa. The low pressure of the residual gas
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,«éku;it possible to heat the ampuls to high temperatures without fear of their bursting,
Mhe ampuls were placed in a thermostat, and diffusion annealing was carried out. Periodi-

ally one of the ampuls was removed and opened, and the total amount of diffusate in the
‘@sample was determined.

@ Variant 2 (Fig. 1B). This system was developed for studying the kinetics of the absorp-
‘_ﬁmxof tritium by metals,* but it was also used for the determination of the diffusion param-

#geters of radon in polymers. The device provided for the heating of the samples up to a tem-
i;ngmre of 1000°C in an inert atmosphere or a vacuum with an assigned specific activity of

em. The system consists of a quartz test tube, which is con-
Mrected to the remaining system through a water-cooled ground-glass joint. The test tube
@ontains the samples and a sample push rod. The heating is effected by an external resistance
i&fornace. The samples are collected through a sluice valve. Radon is admitted from an ampul
g_ﬁthzeolite, on which the radon was adsorbed. The evacuation of the system is effected by
“jzeolite pump to a residual pressure of 0,13 Pa.

Before the beginning of an experiment, several identical samples of the polymer were
#slaced in the water—cooled section. The entire system was evacuated and heated at the re-
ffgured temperature for several hours. Then the radon was admitted, and the samples were

Fshed into the heating zone by the magnetic push rod. The samples were removed from the
Fheating zone after definite time intervals and dumped into the sluice valve, The valve was

gtuned, and the sample was taken out.

?5: Variant 3 (Fig. 1C). A shortcoming of the methods described above is the discrete nature
$of the measurements, the points on the kinetic curve being obtained with different samples.
,iﬁnvariant 3 the sorption process was monitored by the continuous measurement of the rate of
# decrease in the activity of the diffusate in the gaseous phase. The system consisted of a
~fbmrtz test tube, a branch from which was located in the well of a scintillation counter.
{gheactivity of the gaseous phase was continuously recorded with the aid of an electronic
potentiometer. A shortcoming of this method is the need for large amounts of the polymer.
In addition, it is applicable only for isotopes with sufficiently hard radiation.

The diffusion coefficient and the solubility constant can be calculated from the results
jobtained in variants 1 and 2 by two methods: either from the distribution of the concentration
‘ﬁfthe diffusate across the thickness of the sample or from the dependence of the amount of
{3heimpurity in the solid phase on the time. The longitudinal-section method was not con-
Lsidered in this case. The method for determining the amount of the impurity in the sample
{ﬂmends on the mobility of the impurity in the material at room temperature and on the type
jhfisotope used.

; In the case of a mobile diffusate (for example, tritium in polyethylene), the work was
“carried out according to variant 2, the hot sample being dropped into the desorption cell,
vhich was heated to a temperature above the melting point of the sample, through the sluice
gvﬂye. The carrier gas carried along the radioactive diffusate released to an internal-
.admission counter, where its activity and, therefore, the amount of gas entering the polymer
jdming the sorption experiment, were measured.

- If the diffusing substance is relatively immobile and is labeled with an isotope with
“sufficiently hard radiation for its self-attenuation to be negligible, the quantity of the
impurity in the sample is easily obtained by direct measurement of the activity of the sample.
The diffusion parameters of radon were determined by just such a method. The Y radiation of
the active sample was measured after the attainment of radioactive equilibrium. The tempera-
ture of the sample did not exceed 0°C over the course of all the manipulations.

In the cases considered until now, equations which are applicable in the ordinary vari-
‘ants of the sorption method were used for treating the results of the experiments. For
.example, in the case of a plate of thickness H initially free of the diffusate, when the
. boundary conditions of the first kind are fulfilled (diffusion from a constant source), the
amount of substance which has entered the sample at the time t is described by the equation

(1]

f

*A. P. Brovko participated in the development of the design and its assembly.
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Fig. 1. Systems for radiochemical variants of the sorption of
method. A) Device for introducing a radioactive gas into ne
powders and films: 1) sample; 2) zeolite; 3) zeolite with 22°Ra ta
adsorbed on it; 4) vacuum valve. B) System for collecting 3
samples without breaking the hermetic seal of the system: 1) ba.
sorption cell; 2) sample; 3) magnetic push rod; 4) water-cooled Anhﬁ
ground-glass joint; 5) sluice valve; 6) valve; 7) resistance ]ﬁ
furnace; 8) desorption cell; 9) zeolite with 22°Ra adsorbed on ez
it. C) System for continuous recording of the kinetics of the Eﬁ
absorption of gases: 1) scintillation detector; 2) sample; 3) ﬁﬁ
resistance furnace; 4) source of radioactive gas; 5) ground- ‘B The
glass joint; 6) vacuum valves. ale

b 8 < 1 2 2.2
.“=Mi;=4 (2_!2) /2 [v_i;:_*_z z (—1)% ierfe 2:/%] =1 - Eom exp {_ _(W}’ (l)
n=1 m=

where M_ = CoSH = KgPH is the amount of the substance in the sample at the conclusion of the
sorption process, D is the diffusion coefficient, C, is the concentration of the gas at the
entrance surface of the sample, S is the surface area of the plate, Kg is the solubility con™ g
stant of the gas in the material of the sample, and P is the partial pressure of the diffusalt
vapor in the reservoir.

We note that the series on the left-hand side of Eq. (1) rapidly converge at small times 0!
and that those on the right-hand side rapidly converge at long times.

The flux of the diffusate into the plate is

@ S
8DC,S 2 1)? =2
Q(‘)='—H° S exp{———(m_*-ﬂ),nDt}_ (Z)j hi 16

m=0

If the isotope has sufficiently soft radiation (for example, '“C), it becomes necessary to
take into account the complex radiation absorption, scattering, and reflection processes. '
The approximate equations used in this case were presented in [2, 3]. We developed a meth 5
for taking into account the radiation-attenuation processes based on the solution of a Fredf k!
holm-type integral equation of the first kind. 1In fact, the counting rate measured from $‘;
isotope in the sample is g
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(3)

0

o e R H is the free path of the radiation in the substance, f(x) is a function which takec
@a}account the absorption and scattering of the radiation in the material of the sample, and

E t) is a function which can be determined by solving the diffusion equation. 1In the pres-
1]

at case,

@

4 1 2 1)?=2D
4;(::,:):1—; Emexp{—%}sinwz. (4)

m=0

b ¥
Pe)= [ 5 dy =B, (o) = £, (ua), (5)
pz

5ﬂwreEi is an integral exponential function, and u is the attenuation factor of the radiation
{n the substance.

For o radiation
1
ra=g(t—%), (6)

1:;mre Ry is the free path of the a radiation in the substance, and x Rg-

; In principle, if Ry and u were determined from independent experiments, the diffusion co-
¢fficient can be found from (3) with consideration of (4) and (5) by the ordinary least-squares
gethod. However, expression (5) is applicable only for the thickness ux < 0.3Rg. It does not
take into account the complex processes of scattering and reflection of the radiation, and,
finally, it is difficult to use in work with a mixture of fébtopes. Therefore, f(x) should
be determined experimentally. For this purpose, a thin film of the same polymer (its thick-
fess was selected so that the self-attenuation would be negligible) was held in the sorption
syjstem together with the tablets. The film was saturated uniformly with the diffusate. After
geasurement of the counting rate on an end-plate counter, the film was covered by another
Mnilar film, which did not contain the diffusate, and the counting rate was measured again.
The layers of the absorber were piled up until the thickness of the working sample was achieved.
The function obtained I(4), where A is the thickness of the layer of the absorber, is equiv-
tlent to the function f(x). Using the function fex(x) and the measured values of My (in the
form of It, where It is the counting rate from the diffusate in the sample) and solving inte-
fral equations (3) with respect to ¥(x, t) according to the program described in [4], we find
the concentration profile, from which the diffusion coefficient can easily be calculated.

The proposed method has a universal character and can be used for isotopes with any type
f decay, . for mixtures of isotopes, and for isotopes having several types of radiation. The
ﬁ{viﬂhod does not introduce any approximations. The complex scattering and reflection pro-
‘§tsses, which have scarcely been studied, are taken into account automatically.

In the case of variant 3, in which the sorption kinetics are monitored according to the
lecrease in the pressure in a closed vessel of restricted volume, the variation of the amount
*f the substance with the time is described by the equation [5]

, N 21+ Dajt ;
o =1~ 2 rrpr R e - ) 7

there B = V,/KgVa, V, is the volume of the reservoir, V, is the volume of the sample, and q,

ls a nonzero positive root of the equation tan qp = —Bqn.

ff quion of radioactive gases by the sorption method we used a program package including: a
Od:f Ystem for the preliminary treatment of the results of the diffusion experiments (screening
d- ¢ °fthick layers, smoothing, consideration of the instrumental errors, introduction of correc-—
n - fHons for the absorption of the radiation, etc.), a system for preliminary evaluation of the

"lues of the diffusion parameters (use of approximate equations, method of moments, lineariza-




tion method), a system for treatment of the results according to the nonlinear variant of the
least-squares method (calculation of the diffusion parameters in the framework of the '"clas.
sical" model of diffusion, determination of the errors in the parameters and the confidence
integrals for the curves), and a system for discrimination and selection of a mathematical
model of diffusion (classical diffusion, diffusion in the presence of a chemical reaction,
diffusion with trapping, dissociative diffusion, diffusion in dispersion media, diffusion
under boundary conditions of the third kind, etc.).

The program package was written in the universal FORTRAN language and realized on a come
puter of the BESM-6 type. The smoothing of the results was carried out by the cubic spline
regularization method, and the instrumental errors were considered according to the method
in [6]. Approximate equations based on linearization of the initial or final portions of
the kintic curve were used for the preliminary evaluation of the diffusion coefficient.

For the purpose of facilitating the process of treating the results of the experiments
for studying diffusion phenomena, we developed special types of graph paper, which make it
possible to make complex relationships between the quantities investigated linear [7]. The
functional scale was calculated from Eq. (1). The dependence of F(u) = M¢/M., whereu =t/H2,
on t constructed in these coordinates (Fig. 2) is described by the straight line

(8)

D
u=m(t—-to),

where to is the x intersect, which reflects the time of the beginning of diffusion and can be
used to determine the response time of the instrumentation. From the slope of the straight

line we find the diffusion coefficient
D = H*tga. 9)

The proposed method for representing diffusion data in the form of a linear dependence is
simple and graphic, permits the use of the linear variant of the least-squares method, and
makes it possible to monitor the adequacy of the model used from the value of the correlation
coefficient. e

Since the treatment of the results according to the linear least-squares method can lead
to displaced estimates of the parameters, the final calculation of the diffusion coefficients
and its errors was calculated by the nonlinear variant of the least-squares method. The
adequacy of the model was tested according to the x? criterion.

The treatment of the results was begun with the testing of the classical mechanism of
diffusion. In this case, if the hypothesis of classical diffusion did not work out, a search
for another phenomenological model was carried out. Let us consider some of them.

1. Diffusion + First-Order Chemical Reaction. If the diffusate interacts with the
material of the sample in an irreversible first-order chemical reaction (or undergoes radio- -

active decay), the differential equation for Fick's second law has the form

aC a2C 10
=D —kC, (10)..

where k is the rate constant of the chemical reaction (constant decay).

In this case, the amount of the substance absorbed by the plate up to the time t is

M= *Fap

m=0

. -
8DC,S 2 {u -+ (k4 u) kt — u exp [—(k 4 u) t]) (11) LI_
H 4 7

where u = 7°D(2m + 1)*/H®, The corresponding equations for other geometries can be found in
[8l.
2. Boundary Conditions of the Third Kind. Boundary conditions of the third kind re-

flect the fact that the exchange of concentrations between the surface layer of the sample
and the surrounding medium occurs with a certain finite rate. In this case, the boundary

condition has the form

aC
D =35 =kg(Cy —Cj),
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Fig. 2. Kinetic curve in the sorption method. A) Ordinary
scale; B) functional scale.,

g Fere 3C/3N is the concentration gradient at a certain point on the
“eentration on the surface at the point where 3C/3N is taken, and kg
“Then the amount of substance absorbed by the plate up to the time t

surface, Cgq is the con
is the rate constant.
is

@

M}::Cozgg[l;:f%%tsz], '

n=0

where g = 4SDup/H?e (uy — sin Hn®€oS up), u = uiD/H?, and u, denotes the positive roots of t
;11 equation

Wi

s When boundary conditions of the third kind and a first-
P58 | simultaneously,

_ < u+(k+u)kt—uexp[—(k+u)t]
M'_C"zog{ ot up -

PO < R

3. Diffusion with Trapping. In a number of cases,
|} dccount special properties of the diffusion medium, which
}.with the diffusing substance. The appearance of such an i
_Presence in the solid of traps, which capture the diffusin
for a certain time. If the probabilities of the capture a
‘Mot dependent on the time, if the traps are evenly distributed in space, and if the concentr
:f tlon of the impurity is much lower than the concentration of the defects, the corresponding
¥ 8ystem of differential equations may be written in the form [9]

there arises a need to take into
are manifested in its interaction
nteraction is attributed to the
g atoms and prevent their diffusic
nd release of an atom by a trap ar

is
aC (z, t) *C (z, t)
ot =D 5ef  — ki C (z, t) +kom (z, t), -
W:klc (z, t) — kym (z, 1),

und in Qh ) o

‘ cere C(x, t) and m(x, t) are the concentrations of the mobile and trapped atoms, respective

1; =2 is the diffusion coefficient, k, is the probability of the capture of a diffusing atom by :
re-": “trap, ang k2 is the probability of its release. Solving system (16), for the amount of the
nple i§ Ybstance we obtain

@ 1 .
My=(Co+ mo) HS —.'—2 Cmria {[Co (ay — by — k) —mas] e —[C, (22 — by — ky) — moay | e~} (17)
m=0

:“wre Co and m, = (k,/k2)Co are the concentrations of the impurity in the mobile and immobile
;A“ms on the surface of the sample; a, = 1/2(k, + k, + Dw®) — A, a; = 1/2(k, + ka + Dw?) + A,
. "kaka + 1/4(ky — k, + Du?), w = (2m + 1) m/H.

4
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to find the spectrum of diffusion

imultaneously along
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4. Parallel piffusion.
deviates significantly from the linear dependence,

plex diffusion process into elementary components, i.e-,
coefficients. In this case, it is assumed that diffusion takes place s
several jndependent channels, each of which is characterized by its own
In this case, the total diffusion flux may be represented in the form

I = ZP.']-'(D.')- (18)

i=1
is the flux characterized by the diffusion coefficient Dy, and Py is the contributio
partial flux to the total diffusion process.
In the case of dissociative diffusion [10], it is assumed

that the migration process takes place along two interrelated channels, for example, along
nterstitial sites, along defects with two charge states, through the bulk of
crodefects, etc. A similar situation arises when there are two
types of diffusion paths, each of which is characterized by its own diffusion coefficients.
processes of mutual exchange of the impurity atoms, which are formally described by the
kinetics of a reversible first-order chemical reaction, occur between the twoO paths. The
£ differential equations for dissociative diffusion has the form

where Ji
of this

5. Dissociative Diffusion.

vacancies and i
the solid and along its mi

system O
aC 0*C
'dt_\le’E?}*‘klcl+ k2Ca, (lc
9C, 0*C, ’

\ —3{ =Dz—é?'+k161—'kgc).
tes 1 and 2, respectively, ki

tate 2, k2 is the rate constan
1 and 2

of the impurity in sta

ocess from state 1 to s
e diffusion coefficients for mechanisms

are the concentrations
f the transition pT
and D, and D2 are th

where C, and C2
the rate constant O
of the reverse process,
respectively.

We obtained a solution of system (19 he impurity in 2 flat plate:

- .
) for the amount of t

< 2 . ,
Mz=(cw+czo) HS + S Z ';((Ax+ 4j) et (A + Ag e . ¢
m=0

Here |
A4 As= ('¥1+“f’z)(—a1+k1+2’::)+(¢lD,+%Dl)mz :
A= 74 :

Ay +
[Dx+Dz)"’2+k1+k21—A;

ay =

[(Dy 4+ Da) w? 4k k] A;

I

wo| = o)

ay

1

A=7 V(D; + D2)* w' + (D1 — D2) (kr —ka) ot (k1 k)%
. 4 [ (CmD1+CaoDz)(kl+k2)]__4‘°(klclo—kzczo) (D, — D) .
wth=gg~ Dt Dk @5 o) A (Dik T Dak)

where
] ) (klcm — k3C10) (D§ — D3) N

5D+ 42D _‘_é_[__ (CxoDx+CzoD2)(Dzkz+ Dik,)
71¥2 T ¥2P1 T He Dk, + D:ky - (12+‘°Z)H(ka2+lel ’

2m- 1=
w=—"p g 1 Cro=Ks\ - Pi Cao= K52+ P,
Here Kg, and Kg2. are the solubility constants of the gas in phases 1 and 2, respectively;
ium (ki:Cio = kzczo)

Vx,/D, + k2/Daz. When there is local equilibri

2Cs0 —a, + Dyt ki tka 4 2C1o ﬂz——Dzwz-—'kr—kz .
M=—Tmih= 4 ; A=—(my D A ;

A 2Cyo ﬁ—a,+D,w’+kl+k.‘ .

’='—(2m+i),—.'k2 A '

2k m—Dwi—k—k
A‘=———/,”—-—‘.’———/.
Gmyr ke A
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6. Diffusion in Media of the Dispersion Type. If the defect sites are capable of forming
.ir own phase, which is characterized by a concrete geometric shape and its own diffusion
“Mfficie“t and solubility constant, the mathematical machinery for diffusion in media of the

e ersion type [11, 12] should be used to describe the processes of migration in these media.
bt the sample be a plate of thickness H = 27, in which inclusions of spherical shape and

Z ius To are ;andomly distributed. Then the system of the corresponding differential equa-
the form

'.{';ons has

ac aC oC
i s De0 (400 21
{ t =12 or\" or )’

rere D, and D, are the diffusion coefficients in the dispersion medium and the dispersed

pase (the inclusions), respectively, C, and C, are the distributions of the concentration in
hases 1 and 2, Pin = N/V is the density of the inclusions, N is the number of inclusions,

d Vv is the volume of the sample.

4
; Here it is assumed that the dispersion medium is an ultradilute suspension of spheres

,1hthe plate. The inclusions are assumed to be considerably smaller than the thickness of the
“gample, the "'sinks'" operate independently of one another, the local equilibrium is established
‘{pstantaneously, and the diffusion within an inclusion has spherical symmetry. We shall solve
Tgystem (21) under the following conditions: initial conditions — C,{x, 0) = C,o, Ca(xr, 0) =

?:ho;boundary conditions for the sample (the plate) — C,(l, t) = C] = Kg,P, 3C,/3t(0, t) = 0;
| poundary conditions for an inclusion (a sphere) — C,(ro, t) = kC,(%, ro, t); 8C2(0, t)/3t = 0.
% The amount of the substance absorbed by such a plate up to the time t is
<\ B [1 — exp (=282, Byt)]
2 e " ra) L
M, m=0 n=1 Gim F+1+Ctg Bam — 1-? m 22
2 B ;
a ARE
m=0 n=1 & pmm [F + 1 4ctg?g,, — (1 —_ -B—) E}m]
_where £, denotes the roots of the equation
atZp 4 B (1 — Sam €18 Sam) = 1k Em = 2 ™ m=0, 1,2, 3...

o= D,1?/Dir3, B = (8/ro)(D2/D,)L%k = 3ake,, k is the distribution coefficient of the impurity
;{buween the dispersion medium and the inclusions, €, is the volume fraction of the inclusions,
| ¢ = 4nrdp;,, and B = 77/D,.

: The proposed methods were used to study the diffusion of a radioactive inert gas, viz.,
“Tadon, in low-density polyethylene tablets (the degree of crystallinity was 57%). It was

%1 found that in the case of the system under consideration, the diffusion process is described

{ 8ufficiently well in the framework of the model of classical diffusion. The value of the dif-
{ fusion coefficient is D = (9.5 * 0.8)+10"° cm?/sec and the value of the solubility constant

: s K = 0.60 £ 0.1 cm®/cm®satm. These values are in good agreement with the results obtained
ol ibythe permeability method [13].
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