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TABLE 1. Parameters of Radon Diffusion in Low-Density Poly-

ethylene

Method D, cm’ /sec P, e’ fsec - Pa Kp' cm® /Pa
Integral (5.240.4).107% (4. A420.4). 10713 (0.8540.02)- 10-5
Differential (3.2+0.1)- 1078 (2.6£0.5)-10"13 (0.8240.05)- 103

The plot by Eq. (5) for long durations attains the comnstant quantity I, = (DSCqy)/H, from which
the penetrability constant can be found as

QxH 6
P=~—3.p—. ( )

The diffusion constant can be determined from the time for attaining a flow rate half that in
the stationary state (i.e., Ty/, is a time at which Jj/Je = 0.5):

D H? . (7)
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Study of Radon Diffusion in Polyethylene. The methods proposed were used to study the
diffusion of the radioactive inert gas radon (°°°Rn) in low-density (57% crystallinity) poly-
ethylene films. The typical experimental plots are given in Fig. 3. The evaluations of the
parameters of radon diffusion in polyethylene at the 90%Z significance level (temperature 18°C),
made in the integral (three specimens, seven measurements) and differential (four specimens,
seven measurements) methods, are given in Table 1.

The referred values agree well with the theoretical ones based on physicochemical proper-
ties of radon and with the diffusion parameters of other gases in low-density polyethylene

(3].
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EXPERIMENTAL STUDIES OF RADIOACTIVE GAS DIFFUSION IN SOLIDS.
?

I1. EVALUATION OF RADIOACTIVE DECAY AND ,GROWTH IN THE

PENETRANCE METHOD

I. N. Bekman UDC 539.217.5:546.296

The phenomenological theory of the radiochemical penetrance method is discussed with
due regard for radioactive decay and growth. Expressions are given for time
dependence of flow, amount of substance diffused, and concentration distribution
across the membrane thickness under conditions of gradual radiochemical conver-
sions. It is shown that the time lag may diminish (on radiocactive decay) or in-
crease (due to active deposition). Equations are proposed for calculating dif-
fusion constants of gases labelled with short-lived isotopes having complex decay
characteristics (e.g., of radon) from the experimental data obtained by the
penetrance method.

Processing of experimental data obtained in the radiochemical version of the penetrance
method often makes it necessary to take account of complex processes of radioactive decay and
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growth accompanying diffusion of the test isotope. For instance, when radon is used as a
penetrant, its radioactive decay characteristics (e.g., various types of radiations, complex
decay and growth processes, etc.) renders interpretation of kinetic curves quite difficulc,
In fact, in the integral version of the penetrance method the activity in the closed receiver
will increase not only due to increased concentration of the gas diffused through the mem-
brane, but also due to a multistage process of active deposit formation. In the differential
version flow of radicactive filial atoms may also occur in addition to the flow of radon
atoms. The fall in radon concentration due to radiocactive decay should be given due con-
sideration when the diffusion constants are low or the membrane is very thick.

This work is undertaken to analyze the solutions of diffusion equations in the penetranc
method involving radiocactive decay and growth processes. Attention is focused primarily on
the deduction of mathematical equations necessary for processing experimental data from the
diffusion study of gases labelled with short-lived isotopes or with isotopes having complex
decay characteristics. The problems of concurrent use of emanation and penetrance methods
are discussed.

Note that, in addition to their direct use for radiochemical purposes, the expressions
derived can also be used for processing data on diffusion accompanied by first-order chemical
reactions and consecutive reactions, as also for the study of diffusion in defective media
(diffusion with constant or temporal retention).

Solution of Diffusion Equations Involving Radioactive Decay. Gas transport through thin
membranes with the occurrence of first-order chemical reactions or radioactive decay can be
described by solving the equations for the first and second laws of Fick as follows:

ac* -
0= —ps(25) ch
ac* arcr
at =Dd7— .C (2)
under the boundary conditions
C*(0, )=0; C*(H, t)=C} C*(z, 0)=0, (3

where C*(x, t) is the concentration distribution of the diffusing radioactive gas across the
membrane thickness; C*¥ is the equilibrium gas solubility in the surface layer of the mem-
brane; D is the diffusion constant; S is the membrane area; His the membrane thickness; x is the
coordinate; t is the time; Q is the flow on the outer surface of the membrane; and A is the
radioactive decay constant (or the rate constant of the first-order chemical reaction).

Putting C* = Ceexp{—At} [1] in Eq. (2) we obtain the latter in the usual form:

aC a*C (4)

ot =P oL e

Let decay occur only in the membrane. Such a situation can be attained experimentally,
for instance, by sustaining a constant gas concentration in the reservoir with the help of
radiumradon equilibrium. Then C§ = Co and the general solution can be put in the form [2]

i
C*= X\ S e—),t .C . dt + Ce‘”, (5)
0

where C is the solution for the respective equations in the absence of radiocactive decay:

C(z, t)y= C;; +h2‘(_”" sin%exp {—n?Bt), (6)

™

where B = naD/Ha.

The change of gas concentration distribution across the membrane thickness with time is
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! Fig. 1. Effect of radioactive decay on diffusion
" i time lag and stationary penetrating flow (H = 0.1
t

_ cm). A) Dependence of O3ec/Oyo and Qgec/Qyo on dif-
H fusion constant at a fixed level of constant decay

i (A = 2.1+107%/sec): 1) time lag during decay and 2)
stationary penetrating flow during decay. B) De-
pendence of 8dec/6wo and Qdec/Qwo ©n comstant radio-
active decay at a fixed diffusion constant (D =

10=7 cm?®/sec and H = 0.1 cm): 1) stationary flow

and 2) time lag.

The flow, i.e., the amount of the substance passing at a point x = 0 in unit time
i through the membrane of area S, 1is

- .

& Q(z):DS}C [1T22(—1)ﬂe\p( n2B - %) t) -_2,2’1—;1—_"7[1_e\p —{(n*B L 1) 1)) } (8)

n=1 =

The volume of the gas passing through the membrane in time t 1s

DSC < (—1)
g ()= H0<P+22r%y——ﬂ—ew((ﬁB+MQ]*

< - (—{
+2u2,n—§ﬁ—_—212(;%—u-exp(—(n=B+_1)t)1>- (9

For long durations the plot by Eq. (9) is a straight line describing a stationary state
and the segment intercepted by the extension of the rectilinear segment on the time axis (the

so-called "time lag") is
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The stationary flow with t = =< is described by the expression

DSC, [, . N (=1
0m= }!0[172/\2-’1—23—3:" (ll>

n=\

It can be proved readily that with XA - O expressions (7)-(11) become the usual expres-
sions for diffusion of stable isotopes.
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Fig. 2. Effect of radiocactive decay on kinetic curves in inte-
gral and differential versions of penetrance method (D = 10-°
Cm:/sec, A= 2.1-10_‘/sec, and H = 0.1 cm). A) Amount of sub-
stance diffused through the membrane as a function of time. B)
Material flow through the membrane with time. 1) Without decay
(6 = 1.66710° sec); 2) decay in the membrane (§ = 1.471+10°
sec); and 3) decay in the reservoir and membrane.

Fig. 3. Effect of radioactive decay products of a diffusing
isotope on kinetic curves in the integral version of the pene-
trance method., D = 10~7 cmz/sec; H=0.01 cm; 8 = 167 sec;

A1 = 2.08.107%/sec; and A, = 3.79¢107%/sec. A) Activity change
in the reservoir and B) activity change in the receiver; 1)
activity of the parent isotope A, (radon); 2) activity of the
filial isotope A, (RaA); and 3) total activity.,

Figure 1 demonstrates the effect of radioactive decay on the time lag and stationary
flow. Both stationary flow and time lag diminish when radiocactive decay occurs in the mem-
brane. ‘The distortion of kinetic curves in the integral and differential versions of the
penetrance method is shown in Fig. 2. It is evident that decay may cause significant dis-
tortion of the shape of the experimental plot.

If the gas in the reservoir also decays, Cg = Co exp {—At}, where C¢ is the gas concen-
tration in the surface layer of the membrane at t = 0. Decay in the reservoir does not alter
the time lag.

Penetrability with the Radiocactive Gas Sources Present in the Membrane. Let us now refer
to a more general case, viz., penetrability when the sources of the radioactive gas occur in
the membrane itself. A similar situation arises, for instance, when emanation and penetrance
methods are used simultaneously.

Let the radiocactive gas with a constant decay Xz be distributed initially across the
membrane thickness obeying a certain function C(x, 0) = f(x). The source of the radioactive
gas with a power F is active in the membrane from the instant t = 0. Since our interests rest
on the emanation method, we shall limit ourselved to a discussion of the case F = A,C,, where
A1 1is the constant decay and C, is the concentration of the parent isotope (e.g., 2“Ra).

Let at a later point of time a radiocactive gas concentration CH, be created on one membrane
surface and a concentration CS on the other surface. Then our task is reduced to the solution
of the diffusion equation taking account of the source and the flow as below:

A€y s 4+ 74Cy — 1.4Co. (12)

at gr*

ro
N
fe



er

st

.on *

Solving Eq. (12) by standard methods of mathematical physics [3] we obtain the emanation
concentration distribution across the membrane thickness:

/ Xa H o . (2n=1)=z .
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Equation (13) is a fairly general one permitting one to arrive at equatioms used both
in the emanation method and in the penetrance method with due regard for radiocactive decay.

Solution of Diffusion Equations for Gradual Radiochemical Conversions. Let a radio-
active gas A, decay consecutively to a series of radioisotopes following the scheme

p8 p by
A, =5 Ay > A, —> 4, — .

fach radioisotope is characterized by a proper value of constant decay and diffusion constant
(>*]'_) Di) L

Integral Version of Penetrance Method. For simplicity let us assume that the diffusion
constant of the decay products is much lower than the diffusion constant of the gas. Then
the activity in the closed chamber of the receiver will increase due to gas diffusion and to
accumulation of products of gas decay in the receiver. Further, suppose the decrease in the
number of gas atoms in the receiver due to gas decay is negligible and there is no activity

in the receiver at the starting point of time. Then the change in the number of atoms of
the i-th isotope of the series (i > 1) is described by the differential equation

29, e (14)

gt MG Aigi
the general solution of which is

H
g; =e ¥ |:(10 + S M1t (t)e_l"td‘j' . (15)

0

In our case qo and 1 = 1, and q; is given by the equation [2]

tH N 12 (=)
g; (t)=C,DS [T_ 5D 2 (1 +—.;."_.( n"-) exp (——-n"Bt))] : (16)
n=1

Putting (16) in (15) and integrating, we obtain (taking account of Henry's law) the
following for the rates of counting of each isotope in the receiver:
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where P is the penetrability comstant; . is the specific gas activity in the reservoir; T
is the temperature (°K); To and po are the normal temperature and pressure, respectively;
and k, and k; are the counting coefficients for each isotope.

For calculating radiocactive gas decay in the reservoir the right parts of Egs. (17)-(20)
should be multiplied by exp {—Xt}. -

The counting rate-time plot for each individual member of the series for long durations
becomes straight and the slope of the individual straight lines for each member of the series
is the same (provided the counting coefficients are the same). The time lags for each
individual isotope are respectively

i
r’,:m. (21)
e !
62':50 _,_-/_—:, (22)
H? t
b=%p ~ T2 s’ (23)
DY AT SRR Nt B (24)
A=TBD T 7. - k3 | ha

If the activities of the isotopes 4, and Az are recorded simultaneously, then

H? 1
el+_=m+.—l:. (25)

I1f the activities of the isotopes A,, Az, and As are recorded, then

il

biso43= [

! (26)
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and so on. It is evident from the referred equations that the time lag increases due to the
effect of decay products.

Let us now consider radon diffusion. It is well known that radon decays forming a series
of decay products (active deposition). The decay products are a—, B-, and y-particle radia-
tors. Since a-particle radiation detectors are generally used for radon recording, the
basis scheme of radon decay (ignoring chain branching and long-lived members of the series)
can be depicted as

Rn —% RaA —% RaB —> RaC — .
1 2 3 4

where A\, = 2.08+107%/seci X2 = 3.79¢107%/sec; Xs = 4.314107“/sec; and Au = 5.86+10” " sec.

The total activity of the substances in the receiver will comprise the a-activity of
the three isotopes A:, Aa, and As and therefore the diffusion constant of radon should be
calculated by the equation
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As an example we calculated the curves for activity change in the reservoir (Fig. 3a)
and receiver (Fig. 3b) for a case of radon diffusion at the time lag 8 = 167 sec. A radio-
active equilibrium is established between the isotopes A, and Az within the time span of the
experiment on gas penetrance in the reservoir. It is evident from Fig. 3 that the formation
of the isotope A; exerts much influence on the time-bound change of the activity in the
receiver (the penetrability constant rose twofold and the time lag by 70%). The activity of
the isotope A, is negligible for the referred time lags.

Let us now consider the relative share of the active deposition in the time lags in the
case of radon diffusion in membranes with different diffusion constants (H = 0.1 cm). Then
for D = 1077 cm®/sec, 8, = 167 sec, 82 = 430 sec, By4a = 298 sec, and Bitatats = 1688, i.e.,
the time lag rose by one order. For D = 10~°% cm®/sec, 8, = 1667 sec, 6,42 = 1798 sec, and
8,+2+4 = 3188, i.e., & rose almost twofold. For D = 10~° cm”/sec, 6, = 16,667 sec, Bi4a =
16,798 sec, and O8,4+a2+s = 18,188 sec, i.e., € rose approximately by 9%.

The example shows that active deposition exerts much influence on time lag. However,
the higher the diffusional time lag, the weaker this influence. Therefore, the membrane
thickness should be so chosen in the experiments that this influence could be ignored.

Differential Version. If the decay products of the parent isotope are capable of dif-
fusing with the same diffusion constant as that of the parent isotope, the activity recorded
by the differential detector will be the sum of the flow of the parent isotope decayed during
its passage through the membrane and the flow of the filial isotope formed in the membrane.

The flow of the parent isotope through the membrane in combination with radiocactive
decay can be determined by Eq. (8). The flow of the daughter isotope is

@
. 1 . 2 (—1)" [1 —exp (—hat)] |
02==D5CM1[7:3711‘-exp(—”dﬂlﬁ'jf‘fi 7B+ E
n=1
& & - ~ -~
2%, (—1)"exp [—(n*B = 7,) ] — exp (—hat) __2_2 (—1)n [exn(—n~6‘+/.1)z} —exp {—rat)] (28)
T H 2 (n*B 4 1y) (n*B 14 — 1.2 H niB Aty — la '
n=1 n=1

In the stationary regime

DSC, ) < (1)
(@) _12°C0  F1 z (—=1) 29
@ =" ;a[lﬂ-hl ZﬁTZTT]' (22
n=l1

The total flow in the stationary state is

DSCy datrds | o | o (—1)"
0&:?:—71—0"—-[1 - &k s‘, lgB__" "vljl ’ (30)
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i.e., the stationary flow increases.

Thus, we have shown that the time lag may decrease (on radioactive decay of radom) or
increase (due to active deposition). Decay and growth distort the shape of the experimental
plots and this may cause errors in the calculation of diffusion constants. The referred
factors should be taken inco account in diffusion study employing the penetrance method.
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